Minebea

Automotive Application VR RESOLVERS

CONTENTS

Precautions & Instructions for Use	2
Selecting the resolver	. 3
VR resolver standard series	4
10VRX Type / 15VRX Type / 21VRX Type	- 5
40VRX Type / 52VRX Type / 63VRX Type	6
Options / applications	• 7
Glossary	8
Glossary	
	. 9
Mounting method	9 10
Mounting method	9 10 11

Automotive Application

VR resolvers, angle sensors based on a variable reluctance method, have a promising future mainly for use in controlling motors in automobile-related applications. VR resolvers are expected to find a wide range of applications in the future, such as in electric powered steering, hybrid cars, electric cars, integrated starter generators, brake by wires, steering by wires, and valve controls. The signal from a VR resolver can be converted digitally using the same R/D converter as those intended for the brushless resolver.

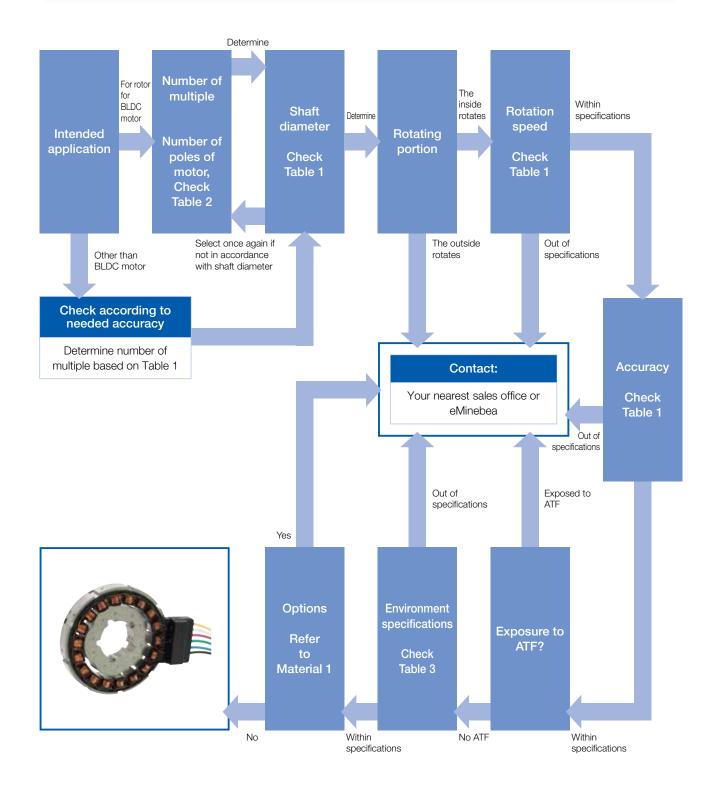
15VRX

34VRX

Precautions & Instructions for Use

For safe use of the product

To use the product correctly and safely, read these precautions very carefully before use.


- Do not use the product in an environment with volatile or flammable gas, or in wet locations. Doing so may result in fire, injury, or electric shock.
- Do not pull or pinch the lead wire when electricity is being supplied. Doing so may result in electric shock. In addition, do not touch the live portion (e.g., connection terminal) when electricity is being supplied. Doing so may result in electric shock.
- Have a professional who has technical knowledge perform the mounting work, wiring work, inspection work, and the like. If there is a fault (e.g., wrong wiring), the product may malfunction, resulting in breakdown or burnout.
- Perform work after the power is turned OFF and safety is confirmed. Stop the operation of the equipment immediately if there is any abnormality. Failure to do so may result in electric shock, injury, or fire, etc.

- Design your device in such a way that the device equipped with this product will stop this product safely should any abnormality occur in this product.
- Do not touch the rotating portion (e.g., shaft) with your fingers when the portion is rotating, since you may get injured.
- Do not take hold of the lead wire portion. Doing so may result in failure such as breaking of wire, or may result in injury due to the product falling.
- The products listed are not manufactured for use in components related to nuclear control. Do not use the product in areas related to nuclear control.
- Be sure to observe the specifications range and usage environment described in this catalog when using the product.
- When mounting and fixing the product, do so securely while taking account of product mass, vibration during operation, vibration from the surroundings, and the like.
 Resonance may result in abnormal vibration or noise, or cause a decline in performance, characteristics, function, or the like.
- Do not use a product that was hit by something or was dropped. Doing so may result in failure to satisfy the performance due to deformation or due to effects on magnetic characteristics.
- Due to design modifications, the design and standard are subject to change without prior notice.

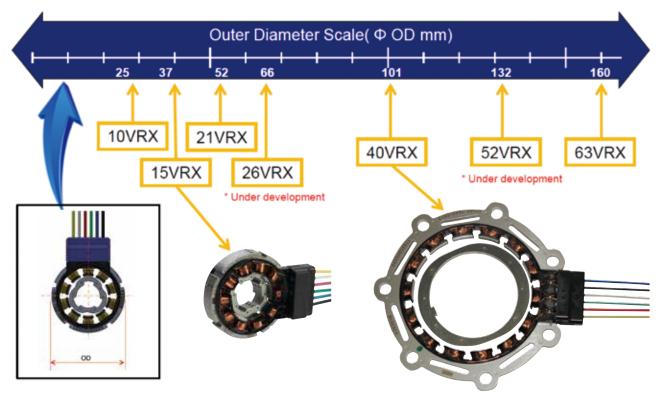
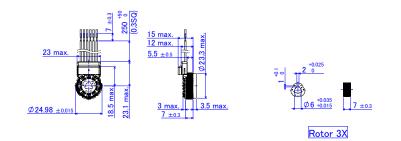
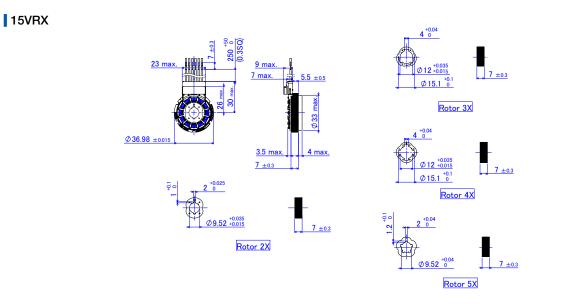

Selecting the resolver

Table 1 : List of characteristics Pag Table 2 : Number of pole pairs of BLDC motor and number of multiple of resolver Pag Table 3 : Environmental durability Pag	je 12	
Material 1: Special shapes of connectors, etc. (option) ····· Paç	•	

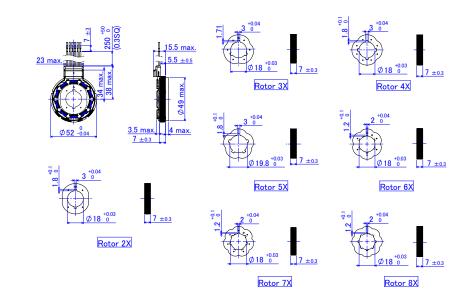
VR resolver standard series

VR resolver standard series

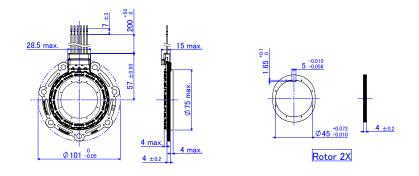


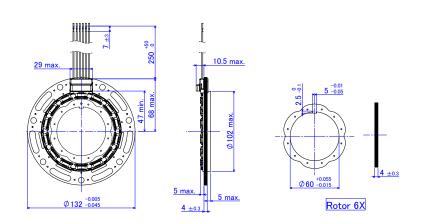

Table 1 : List of characteristics

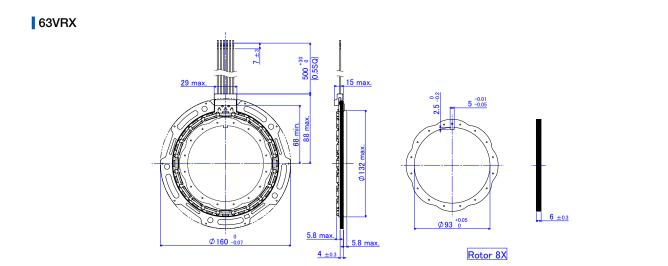
Size	10VRX	15VRX	21VRX	26VRX	40VRX	52VRX	63VRX
Number of multiple	2X-4X	2X-5X	2X-8X	2X-8X	2X-6X	2X-6X	2X-6X
Input voltage	AC 7Vrms						
Input frequency		10kHz					
Transformation ratio	0.286±10%						
Maximum rotation speed	30,000r/min 12,000r/min						
Temperature range	-40°C~+125°C						
Stator outer diameter	25mm	37mm	52mm	66mm	101mm	132mm	160mm
Rotor inner diameter	6mm	12mm	18mm	30mm	45mm	52mm	93mm
Stack thickness	7mm 4mm						
Number of multiple	2X	3X	4X	5X	6X	7X	8X
Angle error	±60´max	±40'́max	±30'́max	±24'́max	±20'max	±18'max	±15´max


Outline dimensions

10VRX

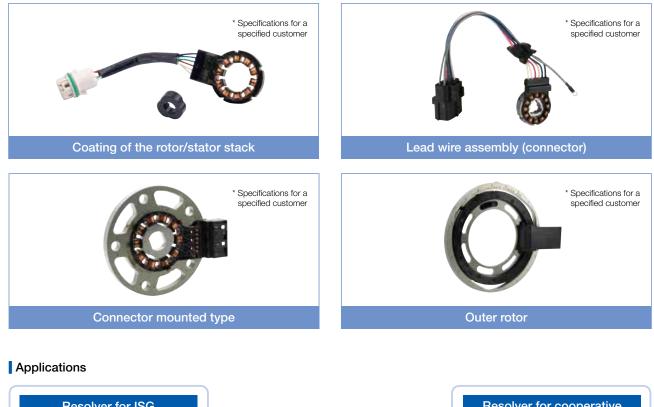


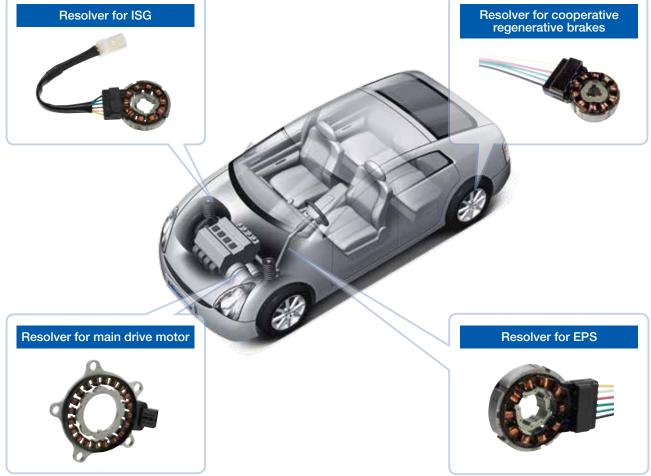



Outline dimensions

40VRX

52VRX



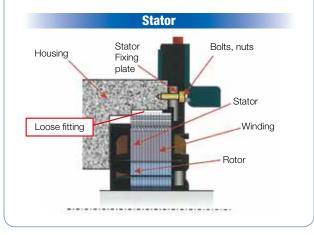

Options/applications

MinebeaMitsumi can offer options such as those shown below at the customer's request.

<representative example>

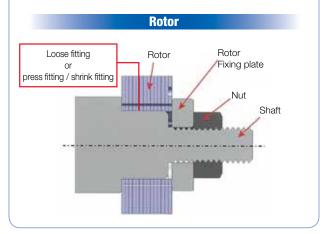
Material 1 : Special shapes of connectors, etc. (option)

Glossary

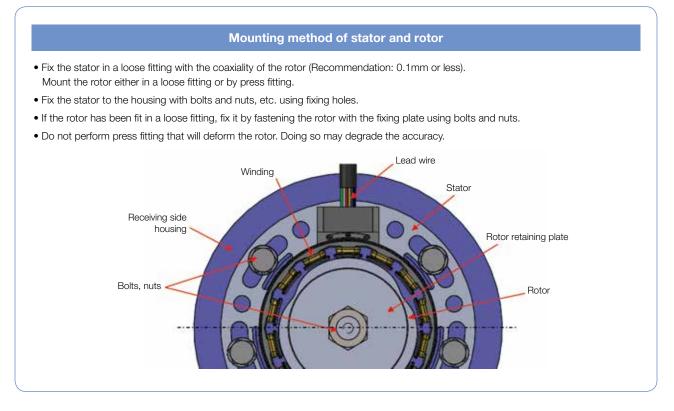

Term	Description
Resolver	Analog converter that converts the rotor's mechanical rotation angle into electric signals based on electromagnetic induction.
VR Resolver	Variable reluctance type resolver.
Primary winding	Input winding (input side).
Secondary winding	Output winding (output side).
Input Voltage	Voltage applied to the primary winding.
Output Voltage	Voltage induced in the secondary winding.
Number of multiple	Value that shows the number of electric signal cycles that will be output when the rotor makes one revolution. Input Voltage Output Voltage (1X) Output Voltage (2X) Output Voltage (nX) 0 0 0 0 0 0 0 0
Transformation ratio	(Transformation ratio = maximum output voltage / input voltage) Shift in time of output voltage to input voltage.
Phase shift	el mar a no or oraçuer ronago lo mper ronago. el morto de par ronago lo mper ronago lo mper ronago. el morto de par ronago lo mper ronago lo mper ronago lo mper ronago. el morto de par ronago lo mper ron
Angle accuracy	Maximum error when the mechanical angle is 360°.
Input frequency	Frequency of the input voltage applied to the primary winding.
Input Impedance	Minimum impedance at the input side.
Output impedance	Maximum impedance at the output side.

Mounting method

Fixing method of small-diameter resolver

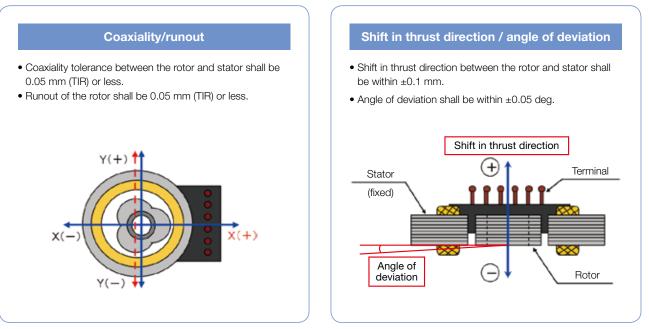

Stator mounting method (fixed plate)

- Mount to the housing in a loose fitting.
- Do not fix by press fitting.
- Fix the stator by fastening it with the fixing plate using bolts and nuts.



Rotor mounting method

- Mount to the shaft either in a loose fitting or press fitting. If the rotor has been fit in a loose fitting, fix the rotor by fastening it with the fixing plate using bolts and nuts.
- Do not perform press fitting that will deform the rotor.

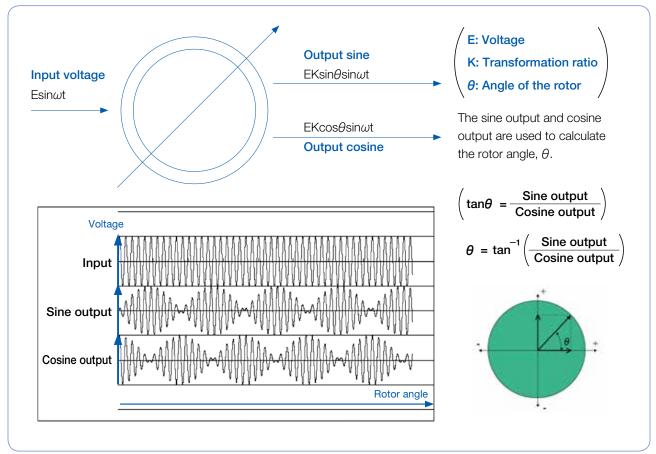

Fixing method of large-diameter resolver (Bigger than 40VRX)

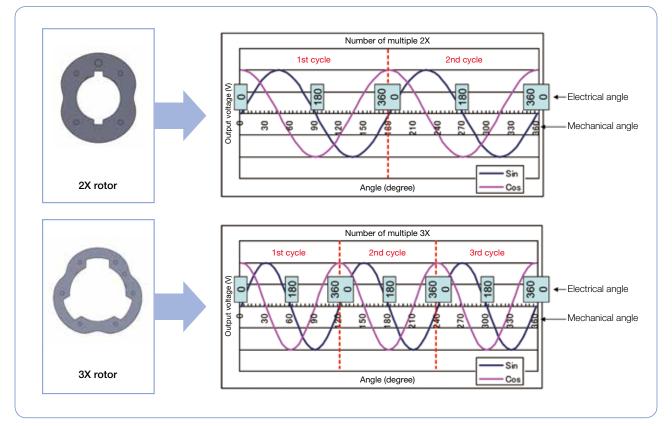
- Fix the rotor and the stator using the fixing plate with bolts and nuts.
- Use your hands or a press when mounting the rotor and stator so that the product does not tilt. Do not strike the product with a hammer, etc. Doing so may degrade the electrical characteristics.
- Be careful not to damage the winding while performing work. Damaging the winding may result in the wire breaking or an insulation failure.

Effect of mounting accuracy (robustness)

Mounting accuracy

Robustness


When the rotor and the stator of the resolver are mounted, resolver accuracy, etc. will degrade if there is rotor decentering/stator decentering/shift in the thrust direction between the rotor and stator. Representative examples are given below to show their influence.


*1 The above are representative values and not guaranteed values. Characteristics will change depending on the model and number of multiple. (The above are representative values of 3X.)

Technical information

Principle of angle detection of the resolver

Rotor shape and number of multiple

Technical information

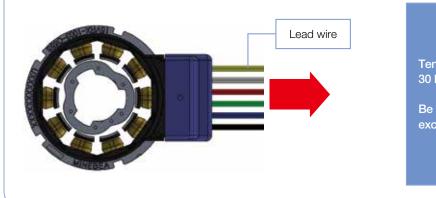

Number of pole	e pairs of motor	Number of mul	tinle of reaching
Number of magnetic poles	(Number of pole pairs)		tiple of resolver
6	(3)	ЗХ	-
8	(4)	4X	2X
12	(6)	6X	ЗX
14	(7)	7X	_
16	(8)	8X	4X

Table 2 : Number of pole pairs of BLDC motor and number of multiple of resolver

Table 3 : Environmental durability

Evaluation test results				
No.	Item	Test conditions	Checked items	
1	High-temperature storage test	125°C 1000h	Electrical characteristics Appearance (Resin portion, rust, varnish, welded portion)	
2	Low-temperature storage test	-40°C 144h	Electrical characteristics Appearance (Resin portion, rust, varnish, welded portion)	
3	High-temperature and high-humidity storage test	85℃,90~95%RH 1000h	Electrical characteristics Appearance (Resin portion, rust, varnish, welded portion, terminal)	
4	Thermal cycle test	-40-125°C 1000 cycle	Electrical characteristics Appearance (Resin portion, rust, varnish, welded portion, terminal)	
5	Sweep vibration test	Acceleration: 98.1 m/s ² Frequency: 10–500 Hz / 15 min Apply vibration in each of X, Y and Z directions for 30 hours.	Electrical characteristics Appearance (Wire binding portion, welded portion, loose portion, stack, resin portion)	
6	Impact test	Peak acceleration A: 981 m/s ² Continuous time T: 6 ms 3 times for each direction of X, Y and Z axes.	Electrical characteristics Appearance (Wire binding portion, welded portion, loose portion, stack, resin portion)	

Lead wire tensile strength

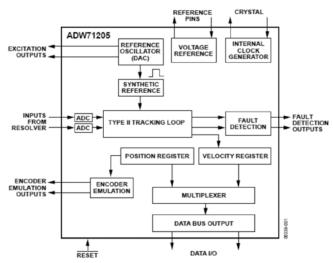
Tensile strength of each lead wire: 30 N in the direction of the arrow.

Be careful not to apply force exceeding this value.

R/D converter

Type of R/D converters

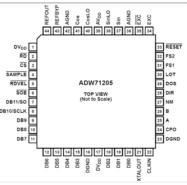
	RDC single unit	RDC + excitation circuit	RDC + excitation circuit + functional safety	Microcomputer + RDC	Excitation circuit + functional safety
Summary	This is the basic RDC that was initially developed. AD2S1205 / AD AD2S1210 / AD ADW71205/ AD	A simple excitation circuit was mounted in order to reduce the number of circuit components.	This RDC is certified with regards to the functional safety standards for road vehicles that will be required in the future, and is equipped with corresponding diagnosis circuits, and also has strong power for the excitation circuit. (PGA411/TI)	If the rotation speed is low (e.g., for use in EPS motors), the microcomputer can calculate the resolver angle. However, when the rotation speed is tens of thousands of rpm (e.g., for use in main drive motors), calculation is difficult. So, a separate RDC was needed.	This is the IC that had the RDC circuit shown on the left removed from PGA411. This IC is certified with regards to functional safety. (PGA412/ TI (under development))
Advantages and disadvantages	<advantages> This RDC has proven track records. Only AD2S1210 has the high accuracy of 16 bits. It is assumed that there are no other 16-bit products.</advantages>	<advantages> The number of circuit components can be reduced.</advantages>	<advantages> Equipped with functions to be reliably used in road vehicles.</advantages>	<advantages> Since a separate RDC IC is unnecessary, ECU size can be made compact.</advantages>	<advantages> If the IC for the RDC single unit or microcomputer + RDC will be used, a complex excitation circuit must be designed if functional safety is required. However, such design will be easy if this IC is used.</advantages>
	<disadvantages> An external excitation circuit will be required. Does not satisfy the requirements for functional safety for road vehicles.</disadvantages>	<disadvantages> Power of the excitation circuit is weak, and some may be susceptible to noise. Does not satisfy the requirements for functional safety for road vehicles.</disadvantages>	<disadvantages> Cost will be higher, since the circuit inside the IC as well as the manufacturing process will be complex.</disadvantages>	<disadvantages> A separate excitation circuit will be required.</disadvantages>	<disadvantages> The microcomputer is not integrated in the package.</disadvantages>


ADW71205

Features

Monolithic resolver/digital converter (RDC) equipped with all functions Parallel and serial 12-bit data port Function to detect system fault Accuracy: ±11 arc minute Input signal range: 3.15 Vp-p ±27% Output of absolute position and speed Maximum tracking rate: 1,250 rps, 12-bit resolution Incremental encoder emulation (1,024 pulses per 1 rotation) Equipped with a programmable sine-wave oscillator Single power source operation: 5.00 V ±5% Operating temperature range: -40°C to +125°C 44-pin LQFP ESD protection: 4 kV

FUNCTIONAL BLOCK DIAGRAM


ANALOG

Applications Motion sensing and control of automobiles

Hybrid electric vehicles
Electric powered steering
Integrated starter generators/alternators
Control of industrial motors
Process control

- Product highlights
- Ratiometric tracking conversion: Type II tracking loop will output the position data continuously without delays in conversion. In addition, the reference signal and the input signal have durability against noise and harmonic distortion.
- 2. System fault detection: The fault detection circuit can detect the loss of resolver signal, out-of-range state of the input signal, mismatch of the input signal, and loss of position tracking.
- 3. Input signal range: The sine input and cosine input can correspond to the differential input voltage of 3.15 Vp-p \pm 27%.
- 4. Programmable excitation frequency: The frequency selection pin (FS1 pin and FS2 pin) is used to easily set the excitation frequency between 10 kHz, 12 kHz, 15 kHz, and 20 kHz.
- 5. Triple-format position data: Access to the 12-bit, absolute angle position data is done through the 12-bit parallel port or the 3-line serial interface. The incremental encoder emulation supplies valid position outputs in the standard A-quad, B-format.
- 6. Digital speed output: Access to the 12-bit signed, digital speed output is done through the 12-bit parallel port or the 3-line serial interface.

Q&A

Question	Answer	
The signal is not output.	Check the wiring.	
	Check the rotor, and check whether the rotation stopper is working.	
	Check whether the prescribed excitation signal is applied to the resolver.	
	Check whether the resolver output signal is output within the receiving performance range of RDC.	
	If RDC is connected, check whether the power is ON.	
	Check the continuity of the resolver itself after disconnecting it with RDC.	
	Check the model, and check whether the stator and rotor have the performance for the same number of multiple.	
	If noise is affecting the signal, take corrective measures such as re-locating the resolver away from the source of noise.	
The signal is disturbed.	Check whether the resolver output signal is output within the receiving performance range of RDC.	
	Check the mounting method, and check whether the recommended mounting accuracy has been secured.	
Advancement of the angle is in reverse.	Check the wiring. Check whether the wiring to Sin and Cos are in reverse.	
Rust has formed.	Rust will form, since no rust-prevention measure has been taken. We have conducter rust tests and confirmed that rust, to a certain extent, will have little influence of performance. However, performance may be affected if rust forms significantly, so check the performance in the actual device.	
Rotor inner diameter dimensions	Plug gauges are used in our delivery inspection. Results may change depending on the measuring method. Please measure with the same measuring method.	
Cannot identify the corresponding relationships between terminal / lead wire and signal.	Check the specifications.	

Contact address

MinebeaMitsumi Inc.

3-9-6 Mita, Minato-ku, Tokyo 108-8330 TEL : 81-3-6758-6711 FAX : 81-3-6758-6700 http://www.minebeamitsumi.com/

eMinebea address http://www.eminebea.com/jp/

Japan

Automotive Devices Sales Unit

Sumitomo Fudosan Mita Twin Bldg.West Wing, 3-5-27, Mita, Minato-ku, Tokyo 108-6319. Japan TEL : 81-3-6758-6763 FAX : 81-3-6758-6760

Tokyo Office

Sumitomo Fudosan Mita Twin Bldg.West Wing, 3-5-27, Mita, Minato-ku, Tokyo 108-6319. Japan TEL : 81-3-6758-6748 FAX : 81-3-6758-6760

Nagoya Office

4F Nagoya Nishiki City Building, 1-6-5 Nishiki, Naka-ku, Nagoya, Aichi 460-0003 TEL : 81-52-231-1181 FAX : 81-52-231-1157

Osaka Office

6F WAKITA Sakaisujihonmachi Building, 1-7-7 Hon-machi, Chuo-ku, Osaka 541-0053 TEL : 81-6-6263-8331 FAX : 81-6-6263-7388

Chaina

Minebea (Hong Kong) Ltd.

Room 712, 7/F, Miramar Tower, 132 Nathan Road, Tsim Sha Tsui, Kowloon, Hong Kong TEL : 852-3423-2300 FAX : 852-2735-4535

Minebea Trading (Shanghai) Ltd.

Room 303, K.Wah Centre, 1010, Middle Huai Hai Road, Xuhui District, Shanghai 200031, China TEL : 86-21-5405-0707 FAX : 86-21-5404-7007

Minebea (Shenzhen) Ltd.

23/F, Tower B, Kingkey 100, No.5016 Shennan Road East, Luohu District, Shenzhen 518008, China TEL : 86-755-82668846 FAX : 86-755-82668843

Minebea Technologies Taiwan Co., Ltd.

Taipei Branch 8F, 28 Ching-Cheng Street. Taipei, Taiwan 105 (Tong Tai Business Building) TEL : 886-2-2718-2363 FAX : 886-2-2718-4092

Korea

NMB Korea Co., Ltd.

7F. JEI Bldg, 353, Hwangsaeul-Ro, Bundang-Gu, Seongnam-Si , Gyeonggi-Do, 13590 Korea TEL : 82-2-557-4467 FAX : 82-2-557-4478

Thailand

NMB-Minebea Thai Ltd. Bangkok Office

19th Floor, Wave Place Building, 55 Wireless Road,Lumpinee Pathumwan, Bangkok, 10330 Thailand TEL : 66-2-253-4897 FAX : 66-2-255-2875/66-2-253-4537

North America

NMB Technologies Corporation

Head Office, Sales office 39830 Grand River Ave., Suite B-1, Novi, Michigan 48375, U.S.A. TEL : 1-248-919-2250

NMB Technologies Corporation Administration Office

9730 Independence Ave., Chatsworth, California 91311, U.S.A. TEL : 1-818-341-3355 FAX : 1-818-341-8207

Europe

Germany

FAX: 33-1-34083930

NMB-Minebea-GmbH

Siemens Str. 30, D-63225 Langen, Germany TEL : 49-6103-913-226 FAX : 49-6103-913-220

France

NMB Minebea S.a.r.I. 5, Avenue des Bosquets, Les Ponts de Baillet, 95560, Baillet en France, France TEL : 33-1-34083939

Italy

NMB Italia S.r.L. Via A, Grandi. 39-41, 20017 Mazzo Di Rho, Milan, Italy TEL : 39-02-939711 FAX : 39-02-939-01154

4106-73 Oaza Miyota, Miyota-machi, Kitasaku-gun, Nagano 389-0293 TEL : 81-267-32-2200 / FAX : 81-267-31-1350 www.minebeamitsumi.com