MITSUMI Digital output Micro Differential Pressure Sensor

2022 12/23 Rev0.0

MMR940 Datasheet

DESCRIPTION

The MMR940 digitally outputs a micro differential pressure value which was corrected. Customers need no correction because it corrects and outputs the differences of sensors and temperature characteristics. It does not require complicated sensor drive or control circuit, and devices with high performance can be made only with this module and an external microcontroller which will be the host.

FEATURES

- Dual nozzle package: 7.0(W) × 7.0(D) × 14.25(H)mm
- Operating pressure range
 C02 rank: -20~20cmH2O(-1.961~1.961kPa)
 C04 rank: -40~40cmH2O(-3.922~3.922kPa)
 C07 rank: -70~70cmH2O(-6.865~6.865kPa)
 C10 rank: -100~100cmH2O(-9.807~9.807kPa)
- Effective resolution: 0.002cmH2ORMS (98.1PaRMS) (at MODE4)
- Pressure measurement error C02 rank: ±2.0(TBD)[%FS] C04,C07,C10 rank: ±1.0(TBD) [%FS]
- It corrects the differences of sensors and temperature characteristics when shipped from our factory.
- It digitally outputs pressure value corrected in the module. (I2C)
- I2C slave address (7 bits) is 0x67Noise reduction is possible by a built-in Low Pass Filter.
- This product contains halogen.

rank			Pressure Unit Conversion Table							
	cmH2O	mbar	bar	psi	inchH2O	İ.W.C	Pa	kPa		
C02	±20	±19.61	±0.01961	±0.2845	±7.9402	±7.9402	±1961	±1.961		
C04	±40	±39.23	±0.03923	±0.5689	±15.8804	±15.8804	±3922	±3.922		
C07	±70	±68.65	±0.06865	±0.9956	±27.7907	±27.7907	±6865	±6.865		
C10	±100	±98.07	±0.09807	±1.4223	±39.7010	±39.7010	±9807	±9.807		

Index

DESCRIPTION	1
FEATURES	1
BLOCK DIAGRAM	3
PIN CONFIGURATION	4
TERMINAL EXPLANATIONS	5
ABSOLUTE MAXIMUM RATINGS	6
RECOMMENDED OPERATING CONDITIONS	6
ELECTRICAL CHARACTERISTICS	7
Analog characteristics	7
Digital I/O	7
CO2 rank Pressure sensor characteristics	8
C04 rank Pressure sensor characteristics	9
C07 rank Pressure sensor characteristics	. 10
C10 rank Pressure sensor characteristics	. 11
Temperature sensor characteristics	. 12
Definition of characteristics	. 12
FUNCTION EXPLANATION	
Function Outline	
State transition table	
Command code	
Flow chart of pressure/temperature measurement	
Timing Chart	
Low Pass Filter	
SERIAL COMMUNICATION INTERFACE	
Baud rate	
I2C AC Characteristics	
I2C format	
TYPICAL APPLICATION CIRCUIT	
TYPICAL PERFORMANCE CHARACTERISTICS	
DIMENSIONS	
MARKING CONTENTS	
PRODUCT NAME PRODUCT LINEUP	
PRESSURE SENSOR LINEUP	
NOTES	
Safety Precautions	
Application considerations during actual circuit design	
Precautions for Foreign Exchange and Foreign Trade Control Act	. 32
Prohibitions for Industrial Property Rights	. 33
Precautions for Product Liability Act.	
Others	
ATTENTION	
ADDTTIONAL NOTES	
PACKING SPECIFICATIONS (TRAY)	
CONDITION FOR PACKAGE MOUNTING	

BLOCK DIAGRAM

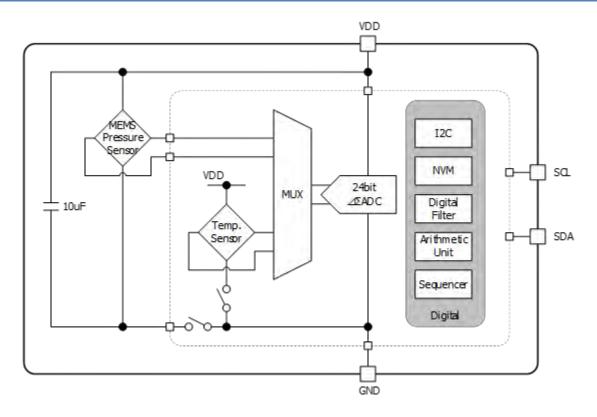


Fig. 1 Block diagram

PIN CONFIGURATION

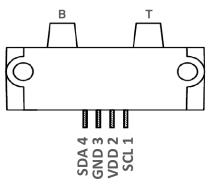


Fig. 2 Pin configuration (Top view)

note' B:Pressure opening to Bottom of MEMS sensor die T:Pressure opening to Top of MEMS sensor die

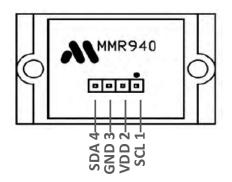


Fig. 3 Pin configuration (Bottom view)

TERMINAL EXPLANATIONS

Table 1 Pin table

No.	Pin Name	Туре	Function
1	SCL	1/0	Serial clock for I2C communication (SCL)
2	VDD	I	Power-supply
3	GND	-	GND
4	SDA	1/0	Serial Data (Input and output) for I2C communication (SDA)
-	Т	-	Pressure opening to Top of MEMS sensor die (T) Output value decreases when Pressure opening (T) is pressurized.
-	В	-	Output value increases when Pressure opening (B) is pressurized.

ABSOLUTE MAXIMUM RATINGS

(unless otherwise specified, Ta=25°C)

Item	Symbol	Min.	Max.	Unit
Storage temperature range	Tstg	-40	85	°C
Analog supply voltage	VDD _{MAX}	-0.3	4.0	V
Digital I/O voltage	VDDIOMAX	-0.3	4.0	V
Overpressure (note1)	Рмах	-200 (-19.6)	200 (19.6)	cmH2O (kPa)
Burst pressure (note ²)	P _{Burst}	TBD	TBD	cmH2O (kPa)
Pressure medium (note ³)	-	Non-corrosive Gas	(non-condensing)	-

note¹: Overpressure is the maximum pressure to which the device can be taken and still meet specifications when return to the Operating pressure range.

note²: Burst pressure is the pressure at which the IC is damaged and leaks occur.

note³: Storage and operation in an environment of dry and non-corrosive gases.

RECOMMENDED OPERATING CONDITIONS

(unless otherwise specified, Ta=25°C)

Ite	Item		Min.	Тур.	Max.	Unit	
Operating temperature range		Topr	-40	_	85	°C	
Analog sup	ply voltage	VDD _{opr}	3.0	3.3	3.6	V	
Digital I/(D voltage	VDDIOopr	1.2	-	3.6	V	
	C02 rank	Popr	-20 (-1.961)	_	20 (1.961)		
Operating pressure	CO4 rank		-40 (-3.922)	-	40 (3.922)	cmH2O (kPa)	
range	C07 rank		-70 (-6.865)	_	70 (6.865)		
	C10 rank		-100 (-9.807)	_	100 (9.807)		
	C02 rank		-	20 (1.961)	-		
Full Scale	CO4 rank	FS	-	40 (3.922)	-	cmH2O	
	C07 rank	ГЭ	-	70 (6.865)	-	(kPa)	
	C10 rank		-	100 (9.807)	-		

The contents of this document are subject to change without notice.

©2022 Mitsumi co., Ltd. All rights reserved.

ELECTRICAL CHARACTERISTICS

Analog characteristics

(unless Ta=25°C, VDD=VDDIO=3.3V)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit.
	I _{VDDact}	Pressure measure active	640	800	960	
VDD Current consumption	VDDsd	Shutdown	-	0.01	0.1	μΑ
VDDIO Current	VDDIOact	Pressure measure active	1.4	2.5	3.0	
consumption	_{VDDIOsd}	Shutdown	-	0.1	1.0	μΑ
	t _{con1}	MODE1	0.385	0.395	0.405	
Conversion time (note ⁴)	t _{con2}	MODE2	0.770	0.790	0.810	msec
	t _{con3}	MODE3	1.54	1.58	1.62	
	t _{con4}	MODE4	3.08	3.16	3.24	

note⁴: The conversion time is longer when the temperature is measured once every 256 times and the characteristic correction is updated.

Digital I/O

(unless otherwise specified, Ta=25°C, VDD=3.0~3.6V, VDDIO=1.2~3.6V)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
High level input voltage	Vih	-	0.8 × VDDIO	-	VDDIO +0.3	V
Low level input voltage	VIL	-	-0.3	-	0.2 × VDDIO	V
Output voltage	V _{OH1}	VDDIO ≥ 2.0V IoH=-3mA	VDDIO -0.4	-	-	V
High level	V _{OH2}	VDDIO < 2.0V IoH=-1mA	0.8 × VDDIO		-	V
Output voltage	Vol1	VDDIO ≥ 2.0V IoL=3mA	-	-	0.4	V
Low level	V _{OL2}	VDDIO < 2.0V Iol=1mA	-	-	0.2 × VDDIO	\vee

C02 rank Pressure sensor characteristics

(unless otherwise specified, Ta=25°C, VDD=3.3V, VDDIO=1.2~3.6V)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating pressure range	Popr	-	-20	-	20	cmH2O
Full Scale	FS	-	-	20	-	cmH2O
Pressure resolution	P _{Res}	-	-	0.00001	-	cmH2O
	P _{Eres1}	MODE1 (tcon1 = Typ 0.395ms)	-	0.019	0.076	
Pressure effective	P _{Eres2}	MODE2 (tcon2 = Typ 0.790ms)	-	0.009	0.036	cmH2O
resolution	P _{Eres3}	MODE3 (tcon3 = Typ 1.58ms)	-	0.004	0.016	RMS
	P _{Eres4}	MODE4 (tcon4 = Typ 3.16ms)	-	0.002	0.008	
Pressure measurement	0	-20 ~ 20cmH20 Ta = 0°C~50°C	-2.0(TBD)	-	2.0(TBD)	%FS
error	P _{Err}	-20 ~ 20cmH2O Ta = - 20°C~85°C	-6.0(TBD)	-	6.0(TBD)	(note ⁵)
		-20 ~ 20cmH2O Ta = 0°C~50°C	-1.30	-	1.30	%FS
Pressure span accuracy	Psacc	-20 ~ 20cmH2O Ta = - 20°C~85°C	-4.00	-	4.00	(note ⁵)
Pressure span accuracy Long term drift	Psitd	-20 ~ 20cmH2O Ta = 0°C~50°C Test condition = 0~50°C 1000h	-	-	±0.7	%FS (note⁵)
Descurre line exit	D	-20 ~ 20cmH2O Ta = 0°C~50°C	-0.44	-	0.44	%FS
Pressure linearity	PL	-20 ~ 20cmH2O Ta = - 20°C~85°C	-1.20	-	1.20	(note ⁵)

note⁵: Ratio to Full Scale (20cmH2O).

CO4 rank Pressure sensor characteristics

(unless otherwise specified, Ta=25°C, VDD=3.3V, VDDIO=1.2~3.6V)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating pressure range	Popr	-	-40	-	40	cmH2O
Full Scale	FS	-	-	40	-	cmH2O
Pressure resolution	P _{Res}	-	-	0.00001	-	cmH2O
	P _{Eres1}	MODE1 (tcon1 = Typ 0.395ms)	-	0.019	0.076	
Pressure effective	P _{Eres2}	MODE2 (tcon2 = Typ 0.790ms)	-	0.009	0.036	cmH2O
resolution	P _{Eres3}	MODE3 (tcon3 = Typ 1.58ms)	-	0.004	0.016	RMS
	P _{Eres4}	MODE4 (tcon4 = Typ 3.16ms)	-	0.002	0.008	
Pressure measurement	0	-40 ~ 40cmH2O Ta = 0°C~50°C	-1.0(TBD)	-	1.0(TBD)	%FS
error	P _{Err}	-40 ~ 40cmH2O Ta = - 20°C~85°C	-3.0(TBD)		3.0(TBD)	(note ⁶)
		-40 ~ 40cmH2O Ta = 0°C~50°C	-0.65	-	0.65	%FS
Pressure span accuracy	Psacc	-40 ~ 40cmH2O Ta = - 20°C~85°C	-2.00		2.00	(note ⁶)
Pressure span accuracy Long term drift	Psitd	-40 ~ 40cmH2O Ta = 0°C~50°C Test condition = 0 ~50°C 1000h	-	-	±0.35	%FS (note ⁶)
December l'accest		-40 ~ 40cmH2O Ta = 0°C~50°C	-0.22	-	0.22	%FS
Pressure linearity	PL	-40 ~ 40cmH2O Ta = - 20°C~85°C	-0.60		0.60	(note ⁶)

note⁶: Ratio to Full Scale (40cmH2O).

MMR940

C07 rank Pressure sensor characteristics

(unless otherwise specified, Ta=25°C, VDD=3.3V, VDDIO=1.2~3.6V)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating pressure range	Popr	-	-70	-	70	cmH2O
Full Scale	FS	-	-	70	-	cmH2O
Pressure resolution	P _{Res}	-	-	0.00002	-	cmH2O
	P _{Eres1}	MODE1 (tcon1 = Typ 0.395ms)	-	0.019	0.076	
Pressure effective	P _{Eres2}	MODE2 (tcon2 = Typ 0.790ms)	-	0.009	0.036	cmH2O
resolution	P _{Eres3}	MODE3 (tcon3 = Typ 1.58ms)	-	0.004	0.016	RMS
	P _{Eres4}	MODE4 (tcon4 = Typ 3.16ms)	-	0.002	0.008	
Pressure measurement	Perr	-70 ~ 70cmH20 Ta = 0°C~50°C	-1.0(TBD)	-	1.0(TBD)	%FS
error		-70 ~ 70cmH2O Ta = - 20°C~85°C	-3.0(TBD)	-	3.0(TBD)	(note ⁷)
	D	-70 ~ 70cmH2O Ta = 0°C~50°C	-0.65	-	0.65	%FS
Pressure span accuracy	Psacc	-70 ~ 70cmH2O Ta = - 20°C~85°C	-2.00	-	2.00	(note ⁷)
Pressure span accuracy Long term drift	Psitd	-70 ~ 70cmH2O Ta = 0°C~50°C Test condition = 0~50°C 1000h	-	-	±0.35	%FS (note ⁷)
Pressure linearity	D	-70 ~ 70cmH2O Ta = 0°C~50°C	-0.22	-	0.22	%FS
	PL	-70 ~ 70cmH2O Ta = - 20°C~85°C	-0.60	-	0.60	(note ⁷)

note⁷: Ratio to Full Scale (70cmH2O).

MMR940

C10 rank Pressure sensor characteristics

(unless otherwise specified, Ta=25°C, VDD=3.3V, VDDIO=1.2~3.6V)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating pressure range	Popr	-	-100	-	100	cmH2O
Full Scale	FS	-	-	100	-	cmH2O
Pressure resolution	P _{Res}	-	-	0.00002	-	cmH2O
	P _{Eres1}	MODE1 (tcon1 = Typ 0.395ms)	-	0.019	0.076	
Pressure effective	P _{Eres2}	MODE2 (tcon2 = Typ 0.790ms)	-	0.009	0.036	cmH2O
resolution	P _{Eres3}	MODE3 (tcon3 = Typ 1.58ms)	-	0.004	0.016	RMS
	P _{Eres4}	MODE4 (tcon4 = Typ 3.16ms)	-	0.002	0.008	
Pressure measurement	P _{Err}	-100 ~ 100cmH2O Ta = 0°C~50°C	-1.0(TBD)	_	1.0(TBD)	%FS
error		-100 ~ 100cmH2O Ta = - 20°C~85°C	-3.0(TBD)	-	3.0(TBD)	(note ⁸)
D	D	-100 ~ 100cmH2O Ta = 0°C~50°C	-0.65	-	0.65	%FS
Pressure span accuracy	Psacc	-100 ~ 100cmH2O Ta = - 20°C~85°C	-2.00	-	2.00	(note ⁸)
Pressure span accuracy Long term drift	Psitd	-100 ~ 100cmH20 Ta = 0°C~50°C Test condition = 0 ~50°C 1000h	-	-	±0.35	%FS (note ⁸)
		-100 ~ 100cmH2O Ta = 0°C~50°C	-0.22	-	0.22	%FS
Pressure linearity	PL	-100 ~ 100cmH2O Ta = - 20°C~85°C	-0.60	-	0.60	(note ⁸)

note⁸: Ratio to Full Scale (100cmH2O).

Temperature sensor characteristics

(unless otherwise specified, $Ta=25^{\circ}C$, VDD=3.3V VDDIO=1.2~3.6V)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Temperature measurement error	T _{acc}	0°C~ 50°C	-2.0	-	2.0	°C

Definition of characteristics

Pressure measurement value Presult

It is the device output value obtained by Read Pressure Result Command.

Pressure resolution PRes

This Value is equivalent to 1LSB of output digital value.

Pressure effective resolution PEres

Measure 16 points after the pressure output is stable, and it is the standard deviation of the 16 points.

Pressure measurement error PErr

It is the deviation amount of the Pressure measurement value from the ideal line. (Refer to Fig. 4) Fig. 5 shows source of error included in the pressure measurement error.

Pressure linearity PL

It is the amount of deviation from the Ref. line connecting measurement value –FS cmH2O with FS cmH2O. (Refer to Fig. 4)

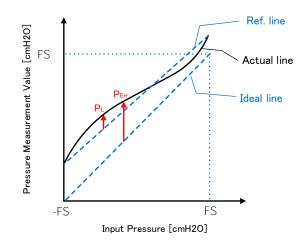
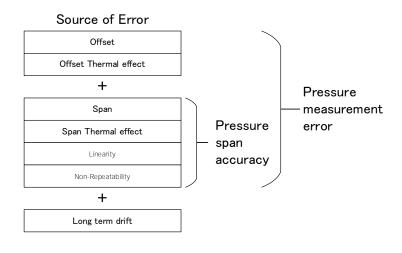



Fig. 4 Definition of Characteristics

Pressure span accuracy P_{Sacc}

It is the accuracy removing the error caused by the offset from the pressure measurement error. (Refer to Fig. 5)

Pressure span accuracy Long term drift Psltd

The amount of fluctuation in Pressure span accuracy over a long term.

FUNCTION EXPLANATION

Function Outline

The MMR940 is consists of piezo resistive pressure sensor and an analog front end IC.

It converts analog output voltage from piezo resistive pressure sensor to digital value of 24 bits, and corrects and outputs variations of sensor characteristics due to variations of temperature and process.

Conversion time and Pressure effective resolution are selectable with the mode of different four. Conversion time and Pressure effective resolution are in the relationship of trade-off.

Noise reduction is possible by a built-in Low Pass Filter. Cutoff frequency of Low Pass Filter can be changed.

State transition table

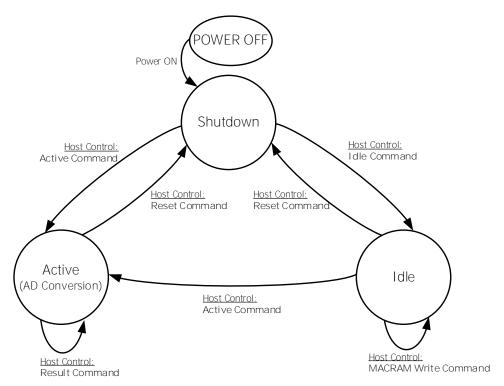


Fig. 6 State transition diagram

Table 2	State transition table	

State Command	Shutdown	Active	Idle
Reset	Power on Reset & Initial Boot =>Shutdown	Power on Reset & Initial Boot =>Shutdown	Power on Reset & Initial Boot =>Shutdown
Active	Reset & Boot Load	Ignore(note ⁹)	=>Active state
	=>Active state(AD conversion)	=>Keep state	(AD conversion)
Result	Ignore(note ⁹)	Output result	Do not issue(note ¹⁰)
	=>Keep state	=>Keep state	=>Keep state
Idle	Reset & Boot Load =>Idle state	Do not issue(note ¹¹) =>Idle state	=>Keep state
MACRAM Write	Ignore(note ⁹)	Do not issue(note ¹¹)	Change cutoff frequency
	=>Keep state	=>Keep state	=>Keep state
Status	Output code	Output code	Output code
	=>Keep state	=>Keep state	=>Keep state

note⁹: NACK is returned to the command. note¹⁰: **The correct result isn't output. Additionally, ACK is returned to the command.** note¹¹: Although command is acceptable, it goes unintended behavior since sequence is running.

Command code

				Table 3	3 Comi			t				
	Command				Comi	mand C					An all a bla Canada	
	Name	HEX.	C7	C6	C5	BI C4	N. C3	C2	C1	CO	Applicable format	
			C/	0	65	C4	63	02	CI	CU		
Reset		0x72	0	1	1	1	0	0	1	0	12C Write format	
		Reset a	nd Retu	irn to Sł	nutdowr	n state.	It beco	mes bu	sy for tł	ne maxi	mum 1.8msec.	
	Idle	0x94	1	0	0	1	0	1	0	0	<u>I2C Write format</u>	
	Tule	Start up the internal circuit and put it in the idle state.										
	Measure at MODE 1	0xA0	1	0	1	0	0	0	0	0		
	Measure at MODE 2	0xA2	1	0	1	0	0	0	1	0	100 Write format	
Active	Measure at MODE 3	0xA4	1	0	1	0	0	1	0	0	<u>12C Write format</u>	
	Measure at MODE 4	0xA6	1	0	1	0	0	1	1	0		
		Start AD) conve	rsion.								

		lable	4 Com		code lis	`	tinued))		
Command				Com	mand C					
Name	HEX.	07			BI		00	01	00	Applicable format
		C7	C6	C5	C4	С3	C2	C1	CO	
Normal	0xC0	1	1	0	0	0	0	0	0	<u>I2C Combined format</u>
With Low Pass Filter	0xC4	1	1	0	0	0	1	0	0	
Read Pressure Result	0 ~ 838 -838860 Howeve conditio C02 ran Pressure Output HE2 8000 C2F7 E17B FFFF 0000 0000 1E84 3D09	ts the ive nur utput r (8607), (8) r, the n can't k, C04 e value examp (. 00 h 00 h 00 h 00 h 00 h 00 h FF h 00 h 00 h FF h 00 h 00 h 00 h FF h 00 h 00 h FF h 00	result of nber is e range, in in case result of be guar rank = DEC. -83886 -40000 -20000 -20000 83886 rank = DEC.	F pressu express case (of neg) f meas ranteec / 10 ^! 000 -1 000 -1 000 -1 000 000 -1 000 -1 000 -1 000 -1 000 -1 000 -1 000 -1 000 -1 000 -1 000 -1 000 -1 000 -1 000 -1 000 -1 000 -1 000 -1 0 1 0 1 0 1 000 000 <	ure meas ed by 2' of positivative ou urementation - 20.000 - 20.000 - 20.000 - 20.000 - 0.000 0.000 20.000 40.000 20.000 - 0.000 - 0.000 - 70.000 - 70.000 - 70.000 0.000 0.000	s comp /e output tput : F when ssure 08 cmH 00 cmH	lement. Jt : 000 FFFFF I being t being t 20 20 20 20 20 20 20 20 20 20)000 h - h ~ 800	~ 7FFFF 0000 h (F h (in decimal number : -1 ~ recommended operating

Table 4 Command code list (continued)

Command			0 0011		mand Co	、 、	inidedy			
Command Name	HEX.			-	BI		_	_	_	Applicable format
Name	HLA.	C7	C6	C5	C4	C3	C2	C1	CO	
	0xC2	1	1	0	0	0	0	1	0	12C Combined format
Read Temperature Result	0 ~ 8388 -8388608	s the re ve numl utput ra 3607), i 3) 5, the re ture val ture val xample 00 h 30 h	esult of ber is e nge, in n case esult of be guara	xpressur xpresse case of of nega measu anteed. EC. / 2-	e measu d by 2's positive tive out rement ^7 Temper	urement comple e outpu put : FF when b	rment. t : 0000 FFFF h being u)00 h ~ ~ 8000	7FFFFI)00 h (i	F h (in decimal number : n decimal number : -1 ~ recommended operating
	0x80	1	0	0	0	0	0	0	0	12C Combined format
					n the IC	1				
Status	D7			D4 D		D1	DO	State		
Status	0	0	-	0 0	-	0	0	Shutdo	WN	
	1	1	1	0 0	1	0	1	Idle		
	1	1	1	0 1	1	0	1	Active		
	OxE4	1	1	1	0	0	1	0	0	I2C MACRAM Write format (special format)
MACRAM Write	It is used	d for wr	iting filt	er coef	ficient. F	for the f	filter co	efficient	, refer t	to <u>10-6. LowPassFilter</u> .

Table 5 Command code list (continued)

Flow chart of pressure/temperature measurement

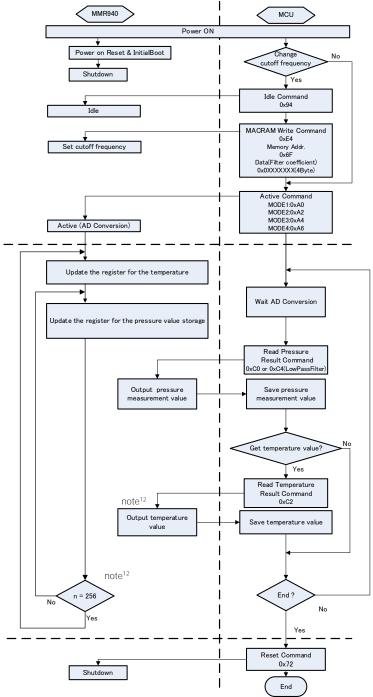


Fig. 7 Flow chart of pressure/temperature measurement

note¹²:Temperature is measured once every 256 times and the pressure characteristic correction is updated. Conversion time will be longer at this timing.

Timing Chart

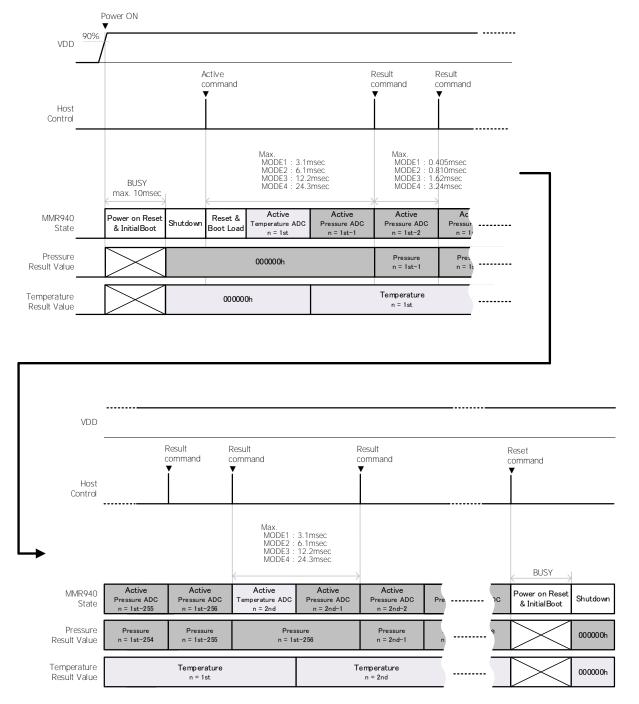


Fig. 8 Timing Chart

©2022 Mitsumi co., Ltd. All rights reserved.

Low Pass Filter

Noise reduction is possible by a built-in Low Pass Filter. Pressure value with Low Pass Filter applied can be got using command code 0xC4. Cutoff frequency fc can be changed by filter coefficient 4Bytes calculated by the equation (1). Filter coefficient is written to the IC using the MACRAM Write command in the idle state. Filter coefficient is cleared to the default value in the shutdown state.

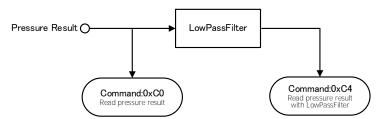


Fig. 9 Low Pass Filter Configuration

Cutoff frequency		No filter	fc=100Hz	fc=10Hz
	MODE1	0.019	0.012	0.0068
Pressure effective resolution example	MODE2	0.008	0.0064	0.0034
[cmH2O RMS]	MODE3	0.0044	0.0036	0.0022
	MODE4	0.0025	0.0023	0.0013

Filter coefficient equation

Filter coefficient(4Bytes) = $2^{27} \times \exp(-2\pi \times f_c \times t_{con})$ ······(Eq1)

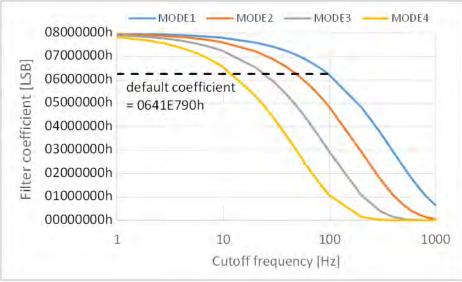


Fig. 10 Filter coefficient example

SERIAL COMMUNICATION INTERFACE

It supports I2C (max.3.4Mbps) as an interface for serial communication.

Baud rate

* This item is not inspected at the time of shipment. (unless otherwise specified, Ta=25°C, VDD= $3.0 \sim 3.6 \vee$)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
I2C communication speed	BR12C1	Cb≦100pF	-	-	3.4	Mbps
rze communication speed	BR _{12C3}	Cb≦400pF	-	-	1.7	Mbps

I2C AC Characteristics

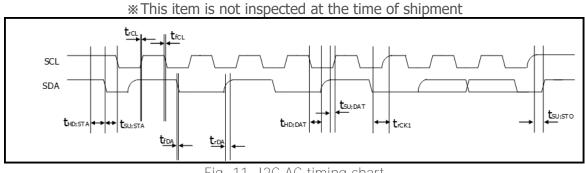


Fig. 11 I2C AC timing chart

			Hsm	node		
Items	Symbol	Cb=1	100pF	Cb=4	100pF	
		min.	max.	min.	max.	
SCL frequency	f _{SCL}	0	3.4	0	1.7	MHz
Start condition setup time	t _{su;sta}	160	-	160	-	ns
Start condition hold time	t _{hd; sta}	160	-	160	-	ns
Stop condition setup time	t _{su;sto}	160	-	160	-	ns
Data setup time	t _{su;dat}	20	-	20	-	ns
Data hold time (note ¹³)	t _{hd;dat}	20	70	20	150	ns
SCL rise time	t _{rCL}	10	40	20	80	ns
Rise time of SCL after ACK (When clock stretch is released.)	t _{rCL1}	10	80	20	160	ns
SCL fall time	t _{fCL}	10	-	20	80	ns
SDA rise time	t _{rDA}	10	80	20	160	ns
SDA fall time	t _{fDA}	10	80	20	160	ns

Table 7 I2C AC Characteristics

note¹³: This product does not have the function to retain data in SDA. Please ensure the hold of SDA with 20nsec for the area where SCL falling edge is not defined.

I2C format

It conforms to I2C protocol except some special formats. I2C address is the total of 8 bits. The first 7 bits are slave address and the rest of 1 bit is R/W bit. Slave address of MMR940 (7 bits) is 0x67. I2C address (8 bits) will be 0xCE (Write) and 0xCF (Read) by combining with R/W bit.

			Tab	le 8 12C a	address			
				I2C Addr	ress (8 bit)			
			Slave	e address	(7 bit)			R/W bit
HEX.	A6	A5	A4	A3	A2	A1	AO	R/VV DIL
OxCE	1	1	0	0	1	1	1	0
OxCF	1	1	0	0	1	1	1	1

I2C Write format

Please send I2C address of 8 bits (0xCE) by Write Mode. Then please send command code.

(1100111b)	S	Slave address (1100111b)	W	А	Command	Α	Ρ
------------	---	-----------------------------	---	---	---------	---	---

Fig. 12 I2C Write format

	: Master to Slave
	Slave to Master
А	: ACK
NA	: NACK
W	: Write request (L)
R	: Read request (H)
S	: Start condition
Р	: Stop condition

Combined format

Please send I2C address (0xCE) and the command code by Write Mode. Then please send I2C address (0xCF) by Read Mode. It outputs the data MSB first

S	Slave address (1100111b)	W	А	Command	А	Р —				
S	Slave address (1100111b)	R	А	Data (MSB)	А	Data	Α	Data	NA	Р

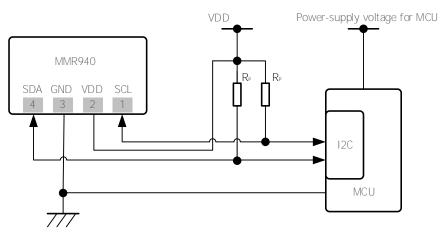
Fig. 13 I2C Combined format

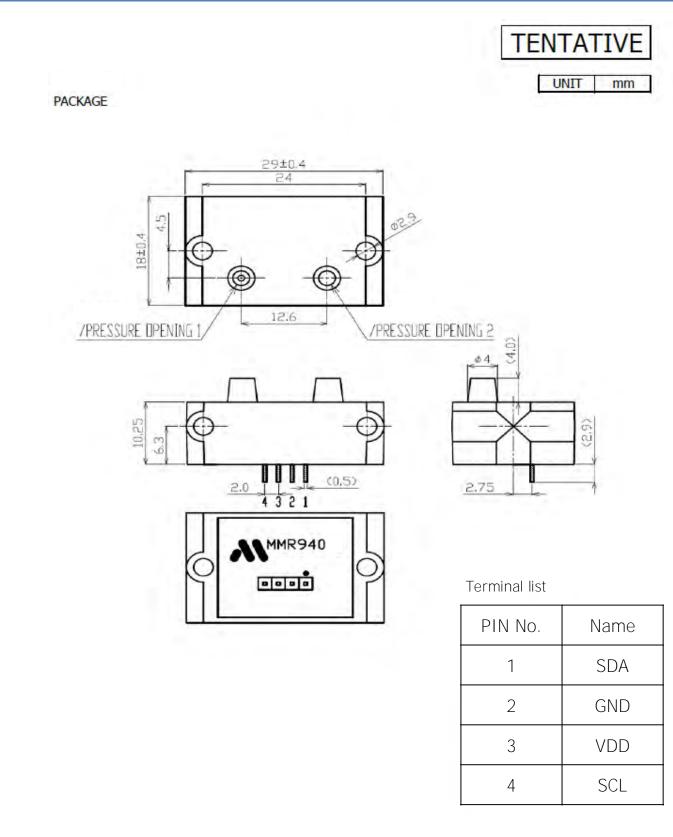
I2C MAC Write format (special format)

It is a format unique to this product that does not partially conform to I2C protocol. Please send I2C address (0xCE), the command (0xE4), and memory address (0x6F) by Write Mode. Then send the data of 4Bytes Filter coefficient. At this time, please be careful that NACK is returned after transmitting LSB. After receiving data, it becomes busy for the maximum 15msec in order to data- writing. During this time, SCL is put in clock stretch. When data- writing is completed, SCL is released.

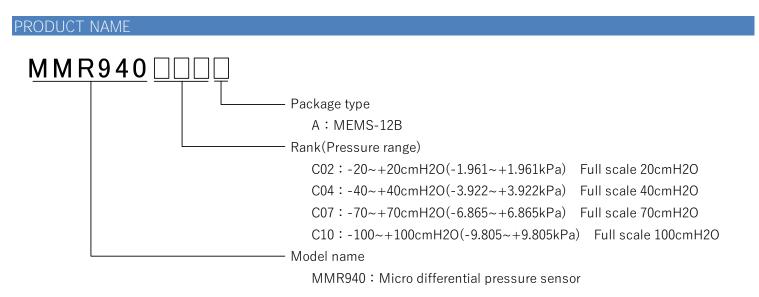
S	Slave address (1100111b) W A		Command (0xE4)	А	A Memory address (0x6F)		Filter coefficient (MSB)	Α]	
→ Filter coefficient A		A Filter coefficient		А	Filter coefficient (LSB) NA		Clock stretch	Р		
		Busy (Max 15msec)								
Fig. 14 I2C MACRAM Write format										

TYPICAL APPLICATION CIRCUIT




Fig. 15 Typical Electrical Connection

TYPICAL PERFORMANCE CHARACTERISTICS


TBD

MMR940

DIMENSIONS

TBD

PRODUCT LINEUP

Product Name	Rank	Pressure Range	Packing	Status
MMR940C02A	C02	-20~20cmH2O(-1.961~1.961kPa)	Tray	Planning
MMR940C04A	C04	-40~40cmH2O(-3.922~3.922kPa)	Tray	Developing
MMR940C07A	C07	-70~70cmH2O(-6.865~6.865kPa)	Tray	Planning
MMR940C10A	C10	-100~100cmH2O(-9.807~9.807kPa)	Tray	Planning

PRESSURE SENSOR LINEUP

Function	Product Name	Size [mm] (L x W x H)	Pressure Range [Pa]	Full Scale [Pa]	Pressure Measurement error [%FS]	Span Accuracy [%FS]	Effective Resolution [PaRMS]	Packing	Halogen	Status
	MMR920C02A	7 x 7 x 7.2	-1,961 ~ 1,961	1,961	2.0	1.30	0.2	Tray	Contain	Planning
	MMR920C02ARE	7 x 7 x 7.2	-1,961 ~ 1,961	1,961	2.0	1.30	0.2	Taping (R)	Contain	Planning
	MMR920C04A	7 x 7 x 7.2	-3,922 ~ 3,922	3,922	1.0	0.65	0.2	Tray	Contain	Developing
	MMR920C04ARE	7 x 7 x 7.2	-3,922 ~ 3,922	3,922	1.0	0.65	0.2	Taping (R)	Contain	Developing
	MMR920C07A	7 x 7 x 7.2	-6,865 ~ 6,865	6,865	1.0	0.65	0.2	Tray	Contain	Planning
Carra	MMR920C07ARE	7 x 7 x 7.2	-6,865 ~ 6,865	6,865	1.0	0.65	0.2	Taping (R)	Contain	Planning
Gage Pressure	MMR920C10A	7 x 7 x 7.2	-9,807 ~ 9,807	9,807	1.0	0.65	0.2	Tray	Contain	Planning
Sensor	MMR920C10ARE	7 x 7 x 7.2	-9,807 ~ 9,807	9,807	1.0	0.65	0.2	Taping (R)	Contain	Planning
	MMR906XAN	6 x 5 x 7.2	-1,000 ~ 40,000	40,000	-	0.66	1.0	Tray	Free	MP
	MMR906XARE	6 x 5 x 7.2	-1,000 ~ 40,000	40,000	-	0.66	1.0	Taping (R)	Free	Developing
	MMR902A34A	7 x 7 x 7.2	-1,000 ~ 40,000	40,000	2.3	0.66	0.7	Tray	Free	MP
	MMR902A34ABE	7 x 7 x 7.2	-1,000 ~ 40,000	40,000	2.3	0.66	0.7	Taping (B)	Free	Developing
	MMR902A34ARE	7 x 7 x 7.2	-1,000 ~ 40,000	40,000	2.3	0.66	0.7	Taping (R)	Free	Developing
	MMR940C02A	29 x 18 x 14.25	-1,961 ~ 1,961	1,961	(2.0)	1.30	0.2	Tray	Contain	Planning
Differential	MMR940C04A	29 x 18 x 14.25	-3,922 ~ 3,922	3,922	(1.0)	0.65	0.2	Tray	Contain	Developing
Pressure Sensor	MMR940C07A	29 x 18 x 14.25	-6,865 ~ 6,865	6,865	(1.0)	0.65	0.2	Tray	Contain	Planning
	MMR940C10A	29 x 18 x 14.25	-9,807 ~ 9,807	9,807	(1.0)	0.65	0.2	Tray	Contain	Planning

NOTES

Safety Precautions

- Though Mitsumi Electric Co., Ltd. (hereinafter referred to as "Mitsumi") works continually to improve our product's quality and reliability, semiconductor products may generally malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of this product could cause loss of human life, bodily injury, or damage to property, including data loss or corruption. Before customers use this product, create designs including this product, or incorporate this product into their own applications, customers must also refer to and comply with (a) the latest versions or all of our relevant information, including without limitation, product specifications, data sheets and **application notes for this product and (b) the user's manual**, handling instructions or all relevant information for any products which is to be used, or combined with this products. Customers are solely responsible for all aspects of their own product design or applications; (b) evaluating and determining the appropriateness of the use of this product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample applications. Mitsumi assumes no liability for customers' product design or applications.
- This product is intended for applying to computers, OA units, communication units, instrumentation units, machine tools, industrial robots, AV units, household electrical appliances, and other general electronic units.
- If you have any intentions to apply this product to the units related to the control and safety of transportation units (vehicles, trains, etc.), traffic signaling units, disaster-preventive & burglar-proof units, or the like, contact our sales representatives in advance.
- Don't apply this product to any aeronautical & space systems, submarine repeaters, nuclear power controllers, medical units involving the human life, or the like.
- Before using this product, even when it is not used for the usage written above, notify and present us beforehand if special care and attention are needed for its application, intended purpose, environment of usage, risk, and the design or inspection specification corresponding to them.
- If any damage to our customer is objectively identified to be caused by the defect of this product, Mitsumi is responsible for it. In this case, Mitsumi is liable for the cost limited to the delivery price of this product.

Application considerations during actual circuit design

- The outline of parameters described herein has been chosen as an explanation of the standard parameters and performance of the product. When you actually plan to use the product, please ensure that the outside conditions are reflected in the actual circuit and assembling designs.
- · Before using this product, please evaluate and confirm the actual application with this product mounted and embedded.
- To investigate the influence by applied transient load or external noise. It is necessary to evaluate and confirm them with mounting this product to the actual application.
- Any usage above the maximum rating may destroy this product or shorten the lifetime. Be sure to use this product under the maximum rating.
- If you continue to use this product highly-loaded (applying high temperature, large current or high voltage; or variation
 of temperature) even under the absolute maximum rating and even in the operating range, the reliability of this product
 may decrease significantly. Please design appropriate reliability in consideration of power dissipation and voltage
 corresponding to the temperature and designed lifetime after confirming our individual reliability documents (such as
 reliability test report or estimated failure rate). It is recommended that, before using this product, you appropriately
 derate the maximum power dissipation (typically, 80% or less of the maximum value) considering parameters including
 ambient temperature, input voltage, and output current.

Precautions for Foreign Exchange and Foreign Trade Control Act

If you export or take products and technologies in this document which are subject to security trade control based on the Foreign Exchange and Foreign Trade Act to overseas from Japan, permission of the Japanese government is required.

Prohibitions for Industrial Property Rights

- Since this document contains the contents related to our copyright and know-how, you are requested not to use this document for any purpose other than the application of this product.
- If a use of this product causes a dispute related to the industrial property rights of a third party, Mitsumi has no liability for any disputes except those which arise directly from the manufacturing and manufacturing method of our products.

Precautions for Product Liability Act

• No responsibility is assumed by us for any consequence resulting from any wrong or improper use or operation, etc. of this product.

Others

- Any part of the contents contained herein must not be reprinted or reproduced without our prior permission.
- In case of any question arises out of the description in this specification, it shall be settled by the consultation between both parties promptly.

ATTENTION

• This product is designed and manufactured with the intention of normal use in general electronics. No special circumstance as described below is considered for the use of it when it is designed. With this reason, any use and storage under the circumstances below may affect the performance of this product. Prior confirmation of performance and reliability is requested to customers.

Environment with strong static electricity or electromagnetic wave

- Environment with high temperature or high humidity where dew condensation may occur
- This product is not designed to withstand radioactivity, and must avoid using in a radioactive environment.

ADDTTIONAL NOTES

- The pressure medium which can use directly is only air. Please do not use other media, especially corrosive gases (organic solvent gas, sulfurous acid gas, hydrogen sulfide gas, etc.) and media which include moisture and foreign substance, since they could cause damages or malfunctions.
- Please handle it noting the foreign body mixing with the pressure opening and atmospheric pressure opening after opening packing.
- When cut folding the PCB after mounting this product, take measures to prevent stress to the package. Also, when you insert the tube in this product, please note that plugging it vertically. Load in the lateral direction of the cover of the nozzle is up to 1kg or less. (Load condition: position of height 4mm from the marking surface.) Excessive load could cause damages of cover, or air leak by peeling from the interface of the cover and the substrate, or malfunctions.
- The light that enters from the pressure entrance reaches the semiconductor chip. Please avoid use in the environment that light enters into the pressure entrance directly, because the semiconductor chip might malfunction because of light.

PACKING SPECIFICATIONS (TRAY)

TBD

CONDITION FOR PACKAGE MOUNTING

TBD

MITSUMI ELECTRIC CO., LTD.

Strategy Engineering Department Semiconductor Business Division

Tel: +81-46-230-3470 / https://www.mitsumi.co.jp/profile/contact.html

Notes:

Any products mentioned this datasheet are subject to any modification in their appearance and others for improvements without prior notification. The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

©2022 Mitsumi co., Ltd. All rights reserved.

The contents of this document are subject to change without notice.