MITSUMI

Temperature and Humidity sensor MMS2

MMS201AA Data Sheet

Description

The MMS201 is a combined relative humidity and temperature sensor module. The dual sensor is also combined with our custom analog front end to provide a fully calibrated and temperature compensated digitized I²C output. The MMS201 proprietary polymer and parallel plate capacitive structure provides excellent robustness and reliability. No complicated sensor drive or control circuit is required, and high performance sensing is achievable only with the MMS201 and an external microcontroller which works as a host.

Features

- Small module: $24mm(W) \times 16mm(D)$
- Operating temperature ranges -25~+85°C
- Operating Humidity ranges 0~100%RH
- Supply voltage 2.2~5.5V
- Current consumption 8.97µA Typ. (@1sample/sec.)
- Current consumption at sleep 0.85µA Typ.
- Output corrected humidity value with repeatability of 0.015%RH (I²C)
- Equipped with a heater for checking operation
- 8-bit I²C address 50h(Write), 51h(Read)

Contents

Description	1
Features	1
BLOCK DIAGRAM	3
Internal structure	4
PIN CONFIGURATION	4
TERMINAL EXPLANATIONS	5
ABSOLUTE MAXIMUM RATINGS	6
RECOMMENDED OPERATING CONDITIONS	6
Power-on sequence	7
Reapply voltage sequence	7
ELECTRICAL CHARACTERISTICS	8
Analog characteristics	
Humidity sensor characteristics	9
Temperature sensor characteristics	9
Digital I/O	
DEFINITION OF CHARACTERISTICS	
FUNCTION	
Description of operation method	
Description of state (Sleep State / Measurement State)	
About system design	
Detailed description of Measurement state	
Heater function	
State transition table	
State transition diagram	
Control register	
Status register	
Method of calculation to temperature and humidity values	20
SERIAL INTERFACE	21
I ² C format	21
Write format	
Read format	
Combined format	23
I ² C AC characteristics	24
TYPICAL APPLICATION CIRCUIT	25
TYPICAL PERFORMANCE CHARACTERISTICS	
DIMENSIONS	29

BLOCK DIAGRAM

Fig.1 Block diagram

Internal structure

Fig.2 Internal structure

PIN CONFIGURATION

Fig.3 Pin configuration (Top view)

Table.1 arts on board

No.	Symbol	Name	
(1)	U1	Temperature and Humidity sensor	
(2)	C0	Capacitor 1µF	
(3)	C1	Capacitor 0.1µF	
(4)	R0	Pull-up resistor (100k Ω)	
(5)	R1	Pull-up resistor (100k Ω)	
(6)	CON	Connector (JST S4B-PH-K-S)	
(7)	-	Cover case	

Table.2 Pin table

No.	Pin Name	Function	
1	VDD	Supply voltage	
2	SCL Serial clock		
3	SDA	Serial data	
4	GND	Ground	

TERMINAL EXPLANATIONS

Table.3 Pin table

No.	Pin Name	Туре	Function	
1	VDD	Ι	Power supply	
2	SCL	I/O	Serial clock for I ² C communication(SCL)	
3	SDA	I/O	Serial Data (Input and output) for I ² C communication(SDA)	
4	GND	-	GND	

ABSOLUTE MAXIMUM RATINGS

(unless otherwise specified, Ta=25°C, VDD=3.3V)				
Item	Symbol	Min.	Max.	Unit
Storage temperature range	T _{STG}	-25	+85	°C
Analog supply voltage	VDD _{MAX}	-0.3	+6.0	V
Digital input voltage	VDIN _{MAX}	-0.3	VDD+0.3	V

RECOMMENDED OPERATING CONDITIONS

(unless otherwise specified	, Ta=25°C, VDD=3.3V)
-----------------------------	----------------------

Item	Symbol	Min.	Max.	Unit
Operating temperature range	T _{OPR}	-25	+85	°C
Operating humidity range	H _{OPR}	0	100	%RH
Analog supply voltage	VDD _{OPR}	+2.2	+5.5	V
Digital input voltage	VDINOPR	0	VDD	V

Power-on sequence

When the power is turned on, access the device at least 15msec. after reaching 90% of the applied voltage. (note¹)

Reapply voltage sequence

When turning on the power again, wait until VDD drops below 0.1V, and then turn on the power again after at least 6msec has elapsed.

Fig.5 Reapply voltage Sequence

note¹: The above power-on sequence operation may fail when the power is turned on, for example, if the power waveform is not appropriate. If the power-on sequence fails, MMS201 transitions to a setting that rejects I²C communication, reflecting the error state in the ERR_BL bit of the status register, in order to prevent the error from continuing to operate in the abnormal state. Refer to the <u>Status register</u> for details on how to check and return.

MMS201AA

ELECTRICAL CHARACTERISTICS

Analog characteristics

(unless otherwise specified, Ta=25°C, VDD=3.3V)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit.
Current consumption	I _{DD}	One Shot Operation 1sample/sec. (note ²)	-	8.97	14.2	μA
Current consumption at Sleep	I_{DDSL}	At Sleep state (note ³)	-	0.85	1.6	μA
Current consumption at Standby	I_{DDSB}	At Standby state (note ³)	-	0.95	1.8	μA
Current consumption at Measurement	I_{DDM}	At Measurement state (note ³)	-	1120	1420	μA
Current at Heater-ON (note ⁴)	I_{HEAT}		-	10	-	mA
VREC voltage	V_{RGSL}	At Sleep state (note ³)	1.71	1.8	1.89	V
VKEG VOldge	V _{RGACT}	At Active	1.71	1.8	1.89	V

note²: The average of one sample per second by One Shot Operation.

note³: For details of each state, refer to <u>Description of the state</u> or <u>State transition diagram</u>. note⁴: About setting heater, please see <u>Heater function</u>.

Humidity sensor characteristics

(unless otherwise specified, Ta=25°C, VDD=3.3V)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Humidity accuracy	H_{acc}	25°C, 50%RH	-	(±2) TBD	-	%RH
Humidity repeatability	H _{rep}		-	0.015	-	%RH RMS
Humidity hysteresis	H_{hys}	Ta=25°C	-1	-	+1	%RH
Humidity response time	t _{HRESP}	10⇔90%RH @Ta=25°С, т=63%	-	TBD	-	sec.

Temperature sensor characteristics

(unless otherwise specified, Ta=25°C, VDD=3.3V)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Temperature accuracy	T_{acc}	Ta = 25°C	-0.6	-	+0.6	°C

Digital I/O

(unless otherwise specified, Ta=25°C, VDD=3.3V)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
High level input voltage	V_{IH}	SCL、SDA	0.7 × VDD	-	VDD +0.3	V
Low level input voltage	V _{IL}	SCL, SDA	-0.3	-	0.3 × VDD	V
Output voltage High level	V _{OH}	I _{OH} =-3mA	0.8 × VDD	-	-	V
Output voltage Low level	V _{OL}	SCL、SDA I _{OL} =3mA	-	-	0.4	V

DEFINITION OF CHARACTERISTICS

To be released

FUNCTION

Description of operation method

MMS201 operates on the I²C interface and the slave address (7-bit) is 28h. The operation is controlled by specifying the control register in the write format. When accessed in the read format, the measurement result can be read as a digital value. For the method of calculating the digital value to temperature and humidity, refer to <u>Method of calculation to temperature and humidity values</u>. The status register reflects the operating state and reads the register value by specifying the register address in the combination format

Description of state (Sleep State / Measurement State)

MMS201 transitions to the state according to the control register settings. There are two types of state: Sleep state and Measurement state. Additionally, there are two types of Measurement state: One Shot Operation and Repeat Operation. The outline is shown below

■Sleep state ····Waiting state.

Measurement state

- 1) Repeat Operation ··· Repeat measurement for each set T_{standby}.
- 2) One Shot Operation · · · Only one time measurement.

For details of each state, refer to <u>State transition table</u> and <u>State transition diagram</u>.

About system design

1) Repeat Operation

Measured continuously at each set $T_{standby}$. Read the result after confirming that RDY_DATA in the status register is "1".

2) One Shot Operation

This operation is based on the assumption that the timing should be controlled under the initiative of the MCU. Measurement is instructed by the MCU each time. After measuring is complete, MMS201 transitions to Sleep and waits with minimal current savings.

Detailed description of Measurement state

Repeat Operation

Repeat Operation is measured continuously according to $T_{Standby}$ setting. Set the operation state setting bit SET_STATE [2:0] of the control register to 001b. Set the standby time $T_{Standby}$ for repeat measurements with the Standby time setting bit TSTBY[2:0]. After the measurement is completed, the previous measurement results are discarded and the new measurement results are retained.

Fig.8 Timing chart for Repeat Operation

One Shot Operation

One Shot Operation is a single measure that automatically returns to sleep without transitioning to Standby state. Set the operation state setting bit SET_STATE [2:0] of the control register to 001b and Standby time setting bit TSTBY [2:0] to 111b. After the measurement is completed, the previous measurement results are discarded and the new measurement results are retained.

Fig.9 Timing chart for One Shot Operation

Heater function

MMS201 is equipped with a heater for functional verification. When the heater is enabled (EN_HEATER bit in the control register is 1b), it can be checked to see if it is functioning as a sensor by checking that the temperature is rising and the humidity is falling. Please wait about 20 seconds after activating the heater. Be careful not to forget to return the heater to OFF (EN_HEATER bit in the control register to 0b) after the operation check is finished. The initial value of EN_HEATER bit in the control register is 0b (Heater Off).

MMS201 is equipped with a function to detect abnormal heater current to prevent excessive heat generation. The ERR_HEAT bit in the status register indicates the monitoring result of the abnormal current of the heater.

Table.4 S

St	ate transition table	
	State	
	Standby	Measurement

CET CTATE [2:0]								
SET_STATE [2.0]	Sleep	Standby	Measurement					
Sleep (000b)	Keep state	Transit to Sleep	After AD conversion, transit to Sleep					
Measurement (001b) Repeat Operation	Transit to Measurement	Transit to Measurement	Keep state					
Measurement (001b) One Shot Operation	Transits to Measurement, transits to Sleep after AD conversion	Transits to Measurement, transits to Sleep after AD conversion	Transits to Sleep after AD conversion					
Reset & Sleep (100b)	After all register reset and Boot Load, transit to Sleep	After all register reset and Boot Load, transit to Sleep	After all register reset and Boot Load, transit to Sleep					

When there is error in Boot Load, the MMS201 will be waiting in the sleep state, set ERR_BL "1". Please see Status register for details

State transition diagram

Fig.10 State transition diagram

Notes on transitioning from a Repeat Operation to another

When MMS201 is in Repeat operation and the device is accessed during the transition from Standby to Measurement, it returns an NACK as a communication error. If this happens, wait at least 3msec after a communication error occurs before accessing the device again.

Control register

Addr	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
0Ch	00h	Reserved		TSTBY[2:0]		EN_ HEATER	SET_STATE[2:0]			R/W
 •TSTBY[2:0] : Either 000b~110b is set T_{Standby} (Standby time) When SET_STATE [2:0] is set other than 001b, this setting is ignored. 000b : For manufacturer (note⁵) 001b : For manufacturer (note⁵) 010b : T_{Standby} 100ms 011b : T_{Standby} 400ms 100b : T_{Standby} 1000ms 101b : For manufacturer (note⁵) 110b : For manufacturer (note⁵) 										
•EN_HEATER Set Heater Or •SET_STATE Set operation 000b : Tra 001b : Tra 010b : Pro 011b : For 100b : Res 101b : For 110b : For 111b : Pro	R : n or Off. "0" [2:0] : nsit to "Slee ansit to "Meas ohibited settir manufacture set & Sleep R manufacture manufacture manufacture ohibited settir	is Heater-O p". surement". ngs er (Test stat Reset to initi er (Test stat er (Test stat ngs	FF. ``1″ is H ce) (note ⁵) alize all reg ce) (note ⁵) ce) (note ⁵)	eater-ON. isters, and	then transit	to Sleep.				

Table.5 Detail of control register

Important : Don't send data the other register in this specification sheet. It could lead to operate out of specification

note⁵: Setting for inspection. Be care not to set it. If it is set incorrectly, perform Reset & Sleep. note⁶: After Reset & Sleep, wait for at least 3msec before accessing the device.

Table.6 Detail of status register										
Addr	Initial	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
09h	00h	Reserved	ERR_ HEAT	ERR_ BL	ERR INFO	RDY DATA	2	STATE[2:0]		R/-
•ERR_HEAT: Overcurrent detection signal for heater current. 0: Normal, 1: Abnormal If an overcurrent flows when the heater is used (EN_HEATER=1), the heater operation is stopped and this bit is set to "1". (Overcurrent threshold is 140mA; design value.) Clear condition: Reset & Sleep (SET_STATE[2:0]を 001b) or EN_HEATER=0										
•ERR_BL : NVM BootLoad error detection signal. 0: Normal, 1: Abnormal When this signal becomes "1" (Abnormal), slave address (7-bit) is changed to "4Ch" and transit to error state. Clear condition: Reset & Sleep (SET_STATE[2:0]001b) or being turned on again after power supply is cut off.										
•ERR_INFO : Signal informing prohibition setting of control register. 0: Normal, 1: Abnormal If it is set to prohibit, it transits to sleep state without starting operation. At this time, the ERR_INFO bit of the status register becomes "1". Clear condition: Writing the correct settings starts normal operation. At that time, ERR_INFO is set to "0".										
•RDY_DATA : Signal determining acquisition of conversion result. This bit becomes "0" at the time of conversion setting and "1" after conversion completion. This bit is cleared to "0" by reading the result or Reset & Sleep when this bit is "1".										
•STATE[2:0] Represents M 000b : Sle 001b : Me 010b, 011 100b : Not 101b : Sta 110b : For 111b : Not	: MS201 state asurement (F o : For manu In normal op on again afte ne ndby (Tempo manufacture ne	Repeat Oper facturer peration, thi er power su prary state) er	ration or Or s state is no pply is cut o	ne Shot Ope ot entered. off.	eration) If this conc	lition stops,	Reset & Sle	eep MMS20	1 or being	turned

Method of calculation to temperature and humidity values

The read digital value is the corrected value that is automatically performed for each AD conversion. Therefore, the user can obtain the temperature and humidity using the formula shown below.

Temperature = $(16\text{-bit digital value} - 2^{15}) / 50 + 25$ [°C] Humidity = $1000 * (16\text{-bit digital value} - 2^{15}) / 2^{18} - 20$ [%RH] Example for temperature calculation temperature = $(34003 - 2^{15}) / 50 + 25$ = (+1235) / 50 + 25

= (24.7) +25 = 49.70 [°C]

Example for humidity calculation

humidity

$$= 1000 * (51118 - 2^{15}) / 2^{18} - 20$$

= 1000 * (+18350) / 2¹⁸ - 20
= (69.9997) - 20
= 49.9997 [%RH]

Table.7 16 Correspondence table between 16-bit digital value and temperature

16-bit digital value	16-bit digital value – 2 ¹⁵	Temperature [°C]
65535 (FFFFh)	32767 (7FFFh)	680.34
32769 (8001h)	1 (0001h)	25.02
32768 (8000h)	0 (0000h)	25.00
32767 (7FFFh)	-1 (FFFFh)	24.98
0 (0000h)	-32768 (8000h)	-630.36

|--|

16-bit digital value	16-bit digital value – 2 ¹⁵	Humidity [%RH]
65535 (FFFFh)	32767 (7FFFh)	104.9962
64225 (FAE1h)	31452 (7AE1h)	99.9989
51118 (C7AEh)	18350 (47AEh)	49.9997
38011 (947Bh)	5243 (147Bh)	0.0005
32769 (8001h)	1 (0001h)	-19.9962
32768 (8000h)	0 (0000h)	-20.0000
32767 (7FFFh)	-1 (FFFFh)	-20.0038
0 (0000h)	-32768 (8000h)	-145.0000

SERIAL INTERFACE

The MMS201 supports I^2C of Fast mode (fmax = 400kHz) as an interface for serial communication.

I²C format

The I²C address is 8-bit, including the slave address of the first 7-bits and R/W bit of the remaining 1-bit. Slave address for the MMS201 (7-bit) is 28h. I²C address (8-bit) will be 50h (Write) and 51h (Read) by combining with R/W bit.

Table.9 I ² C address									
	I ² C Address (8-bit)								
	Slave address (7-bit)						D/M/ bit		
HEX.	A6	A5	A4	A3	A2	A1	A0	K/ VV DIL	
50h	0	1	0	1	0	0	0	0	
51h	0	1	0	1	0	0	0	1	

Write format

This format is used to set the control register (0Ch). Start by sending 8-bit I²C address 50h (Write). After the address is received, ACK is returned to the 9th bit. After that, send 8-bit control register address (0Ch). After the register address is received, ACK is returned to the 9th bit. Then, send 8-bit data according to the control register details.

Important : Don't send data the other register in this specification sheet. It could lead to operate out of specification

Read format

This format is used to read measurement results of temperature and humidity. Start by sending 8-bit I²C address 51h (Read). After the address is received, ACK is returned to the 9th bit. After that, 32-bit data is output in 8-bit units in MSB first. Then, send ACK every 8-bit. As shown, Humi.Data is 16-bit of [15:0] and Temp.Data is 16-bit of [15:0]. It is unnecessary to send register address.

Combined format

This format is used to read register value. Start by sending 8-bit I²C address 50h (Write). After the address is received, ACK is returned to the 9th bit. After that, send an 8-bit control register address (0Ch) or status resister address (09h). The MMS201 will respond with ACK with 9th bit. Then, send 8-bit I²C address 51h (Read). After the address is received, ACK is returned to the 9th bit and 8-bit data is output. For details of register, refer to Control register or Status register.

note⁷: It also supports Repeat start condition.

I²C AC characteristics

* Design assurance items

Fig.14	I^2C	AC	timing	chart
--------	--------	----	--------	-------

Table.10 I²C AC Characteristics (note⁸) (unless otherwise specified, Ta=25°C, VDD=3.3V, $C_{OL} \leq 400 pF$)

Itoma		Fast mode			Unit
Items	Symbol	min	typ	max	UTIIL
SCL clock frequency	fscl	0	-	400	kHz
Start condition setup time relative to SCL edge	tsusta	600	-	I	ns
Start condition hold time relative to SCL edge	t hdsta	600	-	I	ns
Stop condition setup time on SCL	tsusto	600	-	-	ns
Data setup time on SDA relative to SCL edge	t sudat	100	-	I	ns
Data hold time on SDA relative to SCL edge	thddat	20	-	-	ns
SCL rise time	t _{rCL}	-	-	300	ns
SCL fall time	t _{fCL}	10	-	300	ns
SDA rise time	trDA	-	-	300	ns
SDA fall time	t _{fDA}	10	-	300	ns

note⁸: This product does not have the function to retain data in SDA. Please ensure the hold of SDA with 20nsec for the area where SCL falling edge is not defined.

TYPICAL APPLICATION CIRCUIT

Fig.15 Typical electrical connection

TYPICAL PERFORMANCE CHARACTERISTICS

Fig.17 Current consumption I_{DD} Temperature characteristics

Fig.19 Current consumption at Sleep I_{DDSL} Temperature characteristics

Fig.21 Current consumption at Standby I_{DDSB} Temperature characteristics

Fig.24 Current at Heater-ON I_{HEAT} Supply voltage characteristics

Fig.23 Current consumption at Measurement I_{DDM} Temperature characteristics

Fig.25 Current at Heater-ON I_{HEAT} Temperature characteristics

Fig.27 VREG voltage V_{RGSL} Temperature characteristics

Fig.29 VREG voltage V_{RGACT} Temperature characteristics

DIMENSIONS

MITSUMI ELECTRIC CO., LTD.

Strategy Engineering Department Semiconductor Business Division

Tel: +81-46-230-3470 / http://www.mitsumi.co.jp

Notes:

Any products mentioned this datasheet are subject to any modification in their appearance and others for improvements without prior notification. The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.