Fan Motor Driver Monolithic IC MM1784XF

Outline

This IC is a motor driver IC for 5~12V fan.

The single-phase full-wave drive switching noise is small, efficient motor drive is possible. This IC has a built-in Lock protection, FG output,TSD is suitablel driver for fan motor.

Features

- 1. Supply voltage range
- 2. Output current
- 3. Operating temperature range
- 4. Consumption current (Drive)
- Output put Vsat voltage (Upper + lower Vsat voltage)
- 6. Hall Bias voltage (VHB=1.5V)
- 7. Lock-Protection
- 8. Auto Restart
- 9. Thermal Shut Down circuit

Package

SOP-10A

Applications

1. Cooling fan

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

2.8~14V 0.8A -40~90°C 5mA typ. 1.1V typ, lo=200mA

Built-in Built-in Built-in Built-in

Block Diagram

Pin Assignment

Pin Description

Pin No.	Pin name	Functions	Internal equivalent circuit diagram			
1 3	IN+ IN–	Hall input positive (+) Hall input negative (–)	Vcc			
2	НВ	Hall element bias				
4	СТ	Capacitor Time	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $			
5 6 7 8	OUT1 GND OUT2 Vcc	Driver output positive (+) GND Driver output negative (–) Vcc	Voc 5 OUT1 (7) OUT2 GND 7777			
9 10	FG LD	Frequency generator Lock detection				

Absolute Maximum Ratings (Except where noted otherwise Ta=25°C)

Item	Symbol	Ratings	Units
V _{cc} supply voltage	Vcc	-0.5~15	V
Output current	Io	0.8	А
Output voltage	Vo	15	V
LD/FG output voltage	VRD/VFG	15	V
LD/FG output current	Ird/Ifg	5	mA
HB output current	Інв	10	mA
Power dissipation	Pd	0.8(Note1)	W
Operating temperature range	Topr	-40~+90	°C
Storage temperature range	Tstg	-55~+150	°C

Note1 : Use base condition 114.3mm×76.2mm, t=1.5mm Copper leaf 50% more than, Material=Glass Epoxy

Recommended Operating Conditions (Except where noted otherwise Ta=25°C)

Item	Symbol	Min.	Тур.	Max.	Units
Vcc supply voltage	Vcc	2.8	12	14	V

Electrical Characteristics

(Except where noted otherwise Vcc=12V, Ta=25°C)

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units		
Supply Current								
Supply current1	Icc1	Operation (CT=L)		5	7.5	mA		
Supply current2	Icc2	Lock protection (CT=H)		3	4.5	mA		
Motor driver circuit								
Gain	Gv	(Note2)	45	48	51	dB		
Output "L" voltage	Vol	Io=200mA		0.2	0.3	V		
Output "H" voltage	Vон	Io=200mA		0.9	1.2	V		
Offset voltage of hall input	Voff			7	15	mV		
Input voltage range of hall input	Vсм		0		Vcc-1.5	V		
Lock circuit								
Charge current	Істс		2.0	2.8	3.5	μA		
Discharge current	ICTD		0.15	0.23	0.30	μA		
charge/discharge current ratio	Rст	RCT=ICTC/ICTD	10.2	12	13.8			
CT charge voltage	VCT1		1.6	1.7	1.8	V		
CT discharge voltage	V _{CT2}		0.6	0.7	0.8	V		
Output circuit	Output circuit							
LD output "L" voltage	VLD	IRD=5mA		0.1	0.2	V		
FG output "L" voltage	VFG	IFG=5mA		0.1	0.2	V		
LD output leak current	I_{LD}	VRD=15V		1	30	μA		
FG output leak current	Ifg	VFG=15V		1	30	μA		
Hall bias circuit								
Hall output voltage	Vhb	IHB=5mA	1.3	1.5	1.7	V		
Thermal shut down circuit	Thermal shut down circuit							
Thermal shut down temperature	Tsd	(Note2)		175		°C		
Thermal shut down reset temperature	Thys(SD)	(Note2)		150		°C		

Note2 : The parameter is guaranteed by design.

Measuring Circuit

Output "L", "H" voltage

Input voltage range of hall input

Gain

Offset voltage of hall input

Charge, Discharge current CT charge, discharge voltage

LD output "L" voltage, leak current

FG output "L" voltage, leak current

Hall output voltage

Typical Application Circuit

Truth Table

IN-	IN+	СТ	OUT1	OUT2	FG	LD	Mode
Н	L	L	Н	L	L	L	L Operation
L	Н		L	Н	Н		
		Н	OFF	OFF		Н	Lock protection