200mA LDO Monolithic IC MM3566 Series

Outline

This IC is a low quiescent current 200mA LDO. The IC can be stable behavior without Input/Output capacitor. Therefore the number of external capacitor is reduced. The IC can be better low quiescent current and load transient by bias boost circuit. Therefore the IC is ideal for mobile applications.

Features

- 1. Maximum operating voltage
- 2. No load input current
- 3. Quiescent current (OFF)
- 4. Output voltage range
- 5. Output voltage accuracy
- 6. Dropout voltage
- 7. Line regulation
- 8. Load regulation
- 9. Vout temperature coefficient
- 10. Output NMOS ON resistance

6.0V

0.9µA typ. (Vo=1.2~3.3V) 0.1µA typ. (Vce=0V) 1.2~5.0V ±1.0% (Vo>2V) 0.35V typ. (Io=200mA, Vo=3V) 0.1%/V max. 40mV max. (Io=1~200mA) ±80ppm/°C typ. 10Ω typ.

Package

SC-82ABB

Applications

- 1. Mobile phone
- 2. Digital stil camera

Block Diagram

Pin Assignment

1	CE			
2	GND			
3	Vout			
4	Vdd			

(TOP VIEW)

Note1 : Heat Spreader Bottom with GND.

Pin Description

SC-82ABB

Pin No.	Pin name	Functions			
1	CE	ON/OFF-C CE L H Connect CE when it is no	Control pin OUTPUT OFF ON C pin with VDD pin, ot used.		
2	GND	GND pin			
3	Vout	Output pin			
4	V _{DD}	Voltage-Su	pply pin		

Absolute Maximum Ratings (Except where noted otherwise Ta=25°C)

Item	Symbol	Ratings	Units
Storage Temperature	Tstg	-55~+150	°C
Junction Temperature	T _{jMAX}	150	°C
Supply Voltage	V _{DD}	-0.3~+7.0	V
CE input Voltage	VCE	-0.3~+7.0	V
Output Voltage	Vout	-0.3~VDD+0.3	V
Output Current Iomax		0~250	mA
Power Dissipation 1	Pd1	330(Note2) (SC-82ABB)	mW
Power Dissipation 2	Pd2	650(Note3) (SC-82ABB)	mW

Note2 : With PC Board of glass epoxy $100 \times 100 \times 1.6$ mm Note3 : JEDEC51-7 standard 114.3 × 76.2 × 1.6mm

Recommended Operating Conditions (Except where noted otherwise Ta=25°C)

Item	Symbol	Ratings	Units
Operating Ambient Temperature	Topr	-40~+85	°C
Operating Voltage	Vop	1.7~6.0	V
Output Current	Iop	0~200	mA

Electrical Characteristics 1 (Except where noted otherwise VDD=VOUT(TYP.)+1V, VCE=VDD, Ta=25°C)

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
Input Current(OFF)	Iddoff	V _{CE} =0V		0.1	1.0	μA
No. Lood Input Current	Inn	1.2V≦V _{OUT} ≦3.3V I _{OUT} =0mA		0.9	1.5	μA
No-Load input Guilent	IDD	3.4V≦Vout≦5.0V Iout=0mA		1.2	2.0	μA
Output Valtage	Varm	Vout>2.0V, Iout=1mA	×0.99		×1.01	V
Oulput voltage	VOUT	Vout≤2.0V, Iout=1mA	-20		+20	mV
Line Regulation V _{LINE} V _{OUT} (TYP.)+0 Io=		Vout (TYP.)+0.5V≦VDD≦6.0V Io=1mA		0.02	0.10	%/V
Load Regulation	VLOAD	1mA≤Iour≤200mA		15	40	mV
Dropout Voltage (Note4)	Vio	Iout=200mA				V
Ripple Rejection (Note5)	RR	f=1kHz, Vripple=0.5V, I _{OUT} =30mA		50		dB
VOUT Temperature Coefficient (Note5)	⊿Vout/⊿T	-40≦Top≦+85°C		±80		ppm/°C
Output Short-Circuit Current (Note5)	Ishort	Ishort Vour=0V		100		mA
CE High Threshold Voltage	VCEH		1.5		VDD	V
CE Low Threshold Voltage	VCEL		0		0.3	V
CE Pin Current (Note5)	Ісен			0.3		μA
Output NMOS ON Resistance (Note5)	Rdon	$V_{CE}=0V$, $V_{DD}=4V$		10		Ω

Note4 : Please refer to another page.

Note5 : The parameter is guaranteed by design.

Electrical Characteristics 2 (Except where noted otherwise VDD=VOUT(TYP.)+1V, VCE=VDD, Ta=25°C)

	Item							
Model No	Outp	out Volta	ge		Drop	out Volta	ige	
Model No.	<u>۱</u>	/оит (V)			Vio (V)			
	Measurement Conditions	Min.	Тур.	Max.	Measurement Conditions	Min.	Тур.	Max.
MM3566A12		1.180	1.200	1.220				
MM3566A13		1.280	1.300	1.320	_		1.01	1.40
MM3566A14		1.380	1.400	1.420	_			
MM3566A15		1.480	1.500	1.520			0.71	1.07
MM3566A16		1.580	1.600	1.620			0.71	1.07
MM3566A17		1.680	1.700	1.720	IOUT=200mA			
MM3566A18	-	1.780	1.800	1.820	1.2V≦Vout<2.5V		0.59	0.87
MM3566A19	-	1.880	1.900	1.920	(Note6)			
MM3566A20	-	1.980	2.000	2.020	-			
MM3566A21	-	2.079	2.100	2.121	-			
MM3566A22	-	2.178	2.200	2.222	-		0.45	0.67
MM3566A23	-	2.277	2.300	2.323	-			
MM3566A24	-	2.376	2.400	2.424				
MM3566A25	-	2.475	2.500	2.525	-			
MM3566A26	-	2.574	2.600	2.626	-			
MM3566A27	-	2.673	2.700	2.727	-		0.42	0.57
MM3566A28	-	2.772	2.800	2.828	-			
MM3566A29	-	2.871	2.900	2.929	-			
MM3566A30	-	2.970	3.000	3.030	-			
MM3566A31	Iout=1mA	3.069	3.100	3.131	-		0.35	0.50
MM3566A32	-	3.168	3.200	3.232	-			
MM3566A33	-	3.267	3.300	3.333	-			
MM3566A34	-	3.366	3.400	3.434	-			
MM3566A35	-	3.465	3.500	3.535	_			
MM3566A36	-	3.564	3.600	3.636	Iout=200mA			
MM3566A37	-	3.663	3.700	3.737	$2.5V \le V_{OUT} \le 5.0$,			
MM3566A38	-	3.762	3.800	3.838	$V_{DD} = V_{OUT} (TVP) = 0.9V$			
MM3566A39	-	3.861	3.900	3.939				
MM3566A40	-	3.960	4.000	4.040	-			
MM3566A41		4.059	4.100	4.141	-		0.00	0.45
MM3566A42	-	4.158	4.200	4.242	-		0.32	0.45
MM3566A43	-	4.257	4.300	4.343	-			
MM3566A44		4.356	4.400	4.444				
MINI3566A45		4.455	4.500	4.545	-			
MN3566A46		4.554	4.600	4.646	-			
IVIIVI3566A47		4.653	4.700	4.747				
IVIIVI3566A48		4.752	4.800	4.848				
MM3566A49	-	4.851	4.900	4.949	-			
MM3566A50		4.950	5.000	5.050				

Note6 : Dropout voltage maximum value in the input and it is confirmed that there is no output abnormal voltage impression the 200mA in the model less than V_{OUT} < 2.5V.

Measuring Circuit

• In the event a problem which may affect industrial property or any other rights of us or a third party is encountered during the use of information described in these circuit, we shall not be liable for any such problem, nor grant a license therefore.

· Note

- 1. Please use this IC within the stated absolute maximum ratings.
- The IC is liable to malfunction should the ratings be exceeded.
- 2. Due to restrictions on the package power dissipation, the output current value may not be satisfied. Attention should be paid to the power dissipation of the package when the output current is large or the voltage between Iinput and Output is high.
- 3. The wire of VDD and GND is required to print full ground plane for noise and stability.
- 4. In case the output voltage is above the input voltage, the overcurrent flow by internal parastic diode from output to input. In such application, the external bypass diode must be connected between output and input pin.
- 5. This IC will limit the output current with the overcurrent protection circuit when the overcurrent and the output do short-circuit.

However, IC generates heat because of the substrate and use conditions and there is a possibility of destroying it exceeding a permissible loss.

The characteristic changes depending on the substrate condition. Please evaluate IC in the set.

- 6. Please keep in mind that output voltage may rise by the leakage current of a power transistor if it is used by low load current(Io<10microA) at the time of high temperature.
- When the terminal VDD (CE) is OFF→ON, the overshoot might be generated. The size of the overshoot depends on "output capacity", "output load", a "voltage rank", and "VDD standup speed." and evaluate it enough with a real machine, please.
 Please refer to Output Rise & Rush Current (P13, 18, 23) Turn-ON Transient Response.
- 8. There is a possibility of becoming load transient response characteristic deteriorates when using it with Dropout voltage less than about 1V. Please evaluate it enough when there is no margin in Dropout voltage. Please refer for examples Load Transient response (P12, 17, 22) characteristic.
- 9. The IC is not an air discharge measures product.
- 10. The IC does not have the thermal shutdown protection.

About Power Dissipation

The Power dissipation change if board to mount IC change because radiative heat fix at board. It is reference data below, Evaluate IC in the set.

MM3566AxxURE

- 1. PC Board of glass epoxy

 Board size
 100mm×100mm t=1.6mm

 Power dissipation
 330mW

 Ta=25°C
- 2. JEDEC51-7 standard

Board size	114.3mm×76.2mm t=1.6mm Copper foil area 80%
Power dissipation	650mW Ta=25°C (It is reference value measured by JEDEC51-7 standard.)

It is recommended to layout the VIA for heat radiation in the GND pattern of reverse (of IC) when there is the GND pattern in the inner layer (in using multiplayer substrate).

By increasing these copper foil pattern area of PCB, Power dissipation improves.

Characteristics (Vout=1.2V) (Except where noted otherwise VDD=Vout(TYP.)+1V, VCE=VDD, Ta=25°C) Input Voltage - Output Voltage Input Voltage - Input Current R∟=∞ 1.5 1.4 1.2 Output Voltage Vo (V) Input Current (µA) 1.0 1.0 0.8 RL=1.2k, 24, 12, 8Ω 0.6 0.5 0.4 0.2 0.0 0.0 7 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 Input Voltage VDD (V) Input Voltage VDD (V) Load Regulation Line Regulation R∟=1.2kΩ 40 6 30 4 Load Regulation (mV) Line Regulation (mV) 20 2 10 0 0 -10 -2 -20 -4 -30 -40 -6 50 2 3 5 7 0 100 150 200 4 6 Output Current Io (mA) Input Voltage VDD (V) Output Voltage - Temperature 1.30 Output Voltage (V) 1.25 1.20 1.15 1.10 0 75 100 125 150 -50 -25 25 50 Temperature (°C)

Output Voltage - Output Current

Ripple Rejection

Load Transient response

(V _{DD} =V	^ν ουτ +1 ,	V _{CE} =V	DD)
•		,	- UL -	00

	20µ	s/div		<< Main	310k >>	lo	5: 50r	nA/o	vib
GND									
			·····				www		
						V	out:C).2V/	div

	20µs/div	Io:50mA/div
GND		
,		
		Vout:0.2V/div

	lo=10mA	\⇔150n	hA, Cin	=Co=0.1µF	=
	20µs/div		<< Mainð10k	lo:100r	nA/div
		/			
GND					
				٨.	
				, i i i i i i i i i i i i i i i i i i i	
				Vout:0	.5V/div

lo=10mA⇔150mA, Cin=Co=None

	20µs/div	< Main210k >>	lo:100mA/div
GND			<u> </u>
,			
			VOUT:U.5V/div

There is a possibility of becoming load transient response characteristic deteriorates when using it with Dropout voltage less than about 1V.

Please evaluate it enough when there is no margin in Dropout voltage.

Output Rise & Rush Current (V_{DD}=0V→2.2V, V_{CE}=V_{DD}, Cin=Co=none, I₀=1mA)

tr=1us (VDD : 10%~90%)

1ms/div		<< Main%10k >>	
			VDD:1V/div
	ſ		
			Vo:1V/div

tr=1ms (VDD : 10%~90%)

1ms/div	-	 << Main	:10k >>				-
	/			١	/DD	1V/c	div
	,	 					
					Vo	1V/c	vib

MITSUMI

Output Voltage - Output Current

Ripple Rejection

Load Transient response

$\Lambda I = \Lambda I = (1 \Lambda I \Lambda I = (1 \Lambda I)$

	20µs/div		<< Ma:	n310k >>	lo:50	mA/div
GND						
		Y			Vout:0).2V/div
					V001.	

20µs/div	< maintine >.	lo:50mA/div
		Vout:0.2V/div
	20µs/div	20µs/div

	20µs/div	lo:100mA/div
GND		
		Vout:0.5V/div

	lo=10mA	A⇔150m	nA, Cin=	Co=0.1µF
	20µs/div		<< Main310k >>	lo:100mA/div
	· · · · · · · · · · · · · · · · · · ·	<u>ر م</u>		
GND				
		444		Λ
		V		
				Vout:0.5V/div

lo=10mA⇔150mA, Cin=Co=None

	20µs/div	 	<< MainJ	10k >>	lo:	100	mA/o	vib
GND								
						Ľ		
					V	оит: С).5V/	div

There is a possibility of becoming load transient response characteristic deteriorates when using it with Dropout voltage less than about 1V.

Please evaluate it enough when there is no margin in Dropout voltage.

Output Rise & Rush Current (V_{DD}=0V→4.3V, V_{CE}=V_{DD}, Cin=Co=none, I₀=1mA)

tr=1us (VDD : 10%~90%)

1ms/div	<< riain210k >>	
		VDD:2V/div
		Vo:1V/div

1ms/div		<< rlains10k	>>		
			١	/DD:2	V/div
	(<u>,</u> ,				
	/				
				Vo:1	V/div
,					

Output Voltage - Output Current

Ripple Rejection

Load Transient response

(VDD=VOUT+1V, VCE=VDD)

	lo=50m/	\⇔100n	nA, Cin	=Co=0.1µF	_
	20µs/div		SS PRIMATOO	lo:50mA/div	
					_
GND					••••
				۸	
;		W			
					,
				v001:0.2 v/un	1

лт: 0.2V/di
т: 0.2V/d

	20µs/div	lo:100mA/div			
GND					
:					
		Vout:0.5V/div			

	<u>lo=10mA</u> ⇔150mA, Cin=Co=0.1μF						
	20µs/div		<< Main3100k :	lo:100mA/div			
		,					
GND							
				Λ			
		N.					
				Vout:0.5V/div			

lo=10mA⇔150mA, Cin=Co=None

	20µs/div	 << Main#10k >>	lo:100mA/div
GND			
-			
			Vout:0.5V/div

There is a possibility of becoming load transient response characteristic deteriorates when using it with Dropout voltage less than about 1V.

Please evaluate it enough when there is no margin in Dropout voltage.

Output Rise & Rush Current (V_{DD}=0V→6.0V, V_{CE}=V_{DD}, Cin=Co=none, I₀=1mA) tr=1us (VDD : 10%~90%)

1ms/div	CINCLUS //
	VDD:2V/div
	Vo:2V/div

1ms/div			<< Main	:10k >>				
				VDD:2V/div				
	/							
	/							
	/	<u> </u>						
	/							
	[Vo	:2V/0	div