Primary-Side Power Control IC for LED Lights Monolithic IC MM3460XF

Outline

This IC is a PFC switching power control IC for LED lights.

It uses a one-converter system into which a PFC (Power Factor Correction) circuit and an AC-DC converter become integrated. Compared to a regular two-converter, a high-efficient configuration can be achieved due to reduction in the number of parts and little power loss. In addition, there is me as the protection setting that built-in specialized input low voltage, overvoltage protection, output overvoltage with a delay, a short protection circuit in for one-converter / for LED lights as a protection circuit and I compare it with conventional PFC-IC and can set it with few part marks.

Moreover, the consumption of start-up current and current during operation are lowered for low standby mode electricity.

This IC uses SOP-8 package and supports flow conditions.

Features

Limits for harmonic current emissions (one-converter system)

PF≑0.99 (reference value)

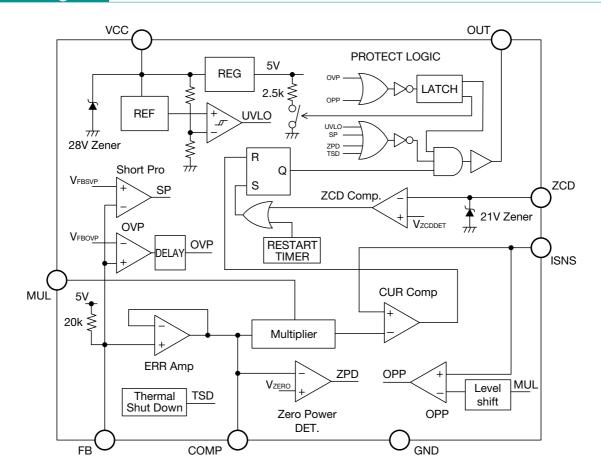
High efficiency: 88% (reference value, at rated load)

Reduction in the number of parts by not using an active filter (PFC) control circuit

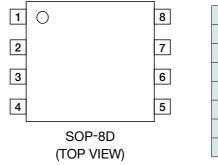
Longer life can be achieved by not using the primary electrolytic capacitor

- 1. High voltage input : 28V
- 2. LED output : 5~60W
- 3. Critical conduction current mode
- 4. Built-in input UVLO, overvoltage protection (28V Zener) circuits
- 5. Built-in output (FB) short, overvoltage protection circuits (with a delay feature)* This Function is original protection
- 6. Start-up current (30µA), current during operation (1mA)

Package


SOP-8D

Applications


- 1. LED lighting devices
- 2. LED bulbs
- 3. Other power supplies

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications

Block Diagram

Pin Assignment

FB			
COMP			
MUL			
ISNS			
ZCD			
GND			
OUT			
VCC			

Pin Description

Pin No.	Pin Name	INPUT/OUTPUT	Function	Internal Equivalent Circuit
1	FB	INPUT	Input of the error amplifier.	$FB = 20k\Omega \ge ERROR AMP + COMP$
2	СОМР	OUTPUT	Output of the error amplifier.	2 7777 ESD Protection Device FSD Protection Device
3	MUL	INPUT	Input to the multiplier.	MUL 5 ESD Protection Device
4	ISNS	INPUT	Input to the current comparator for sensing MOSFET current signal.	ISNS (4) TTT ESD Protection Device
5	ZCD	INPUT	Input for the transformer zero detect comparetor.	ZCD 5 W + CLAMP 1.5V FSD Protection Device
6	GND		GND	
7	OUT	OUTPUT	Gate driver Output for driving MOSFET.	
8	VCC	INPUT	Power supply.	Protection CLAMP (7) Device

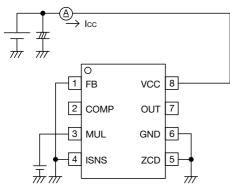
Absolute Maximum Ratings (Except where noted otherwise Ta=25°C)

Item	Symbol Ratings		Units
Storage temperature	Tstg	-55~+150	°C
VCC Supply voltage	VCCMAX	-0.3~Self limit (28)	V
VCC pin input current	IVCCMAX	+10	mA
FB pin supply voltage	VFBMAX	-0.3~+6	V
MUL pin supply voltage	VMULMAX	-0.3~+6	V
ISNS pin supply voltage	VISNSMAX	-0.3~+6	V
ZCD pin input current	Izcdmax	-2~+5	mA
OUT pin input current	Ioutmax -600~+700 mA		mA
Power dissipation	Pd	300 (alone)	mW

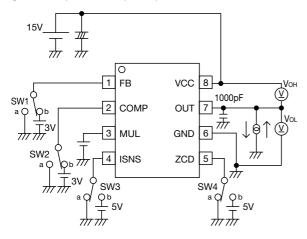
* Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.

Recommended Operating Conditions

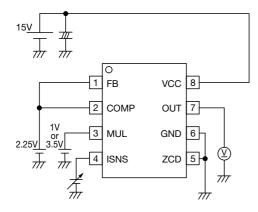
Item	Symbol	Ratings	Units
Operating temperature	Topr	-40~+105	°C
Operating supply voltage	Vopr	$10 \sim 25.5$	V
MUL pin supply voltage	VINMUL	0~+5.5	V
FB pin supply voltage	VINFB	0~+5.5	V
ISNS pin supply voltage	VINISNS	0~+5.5	V

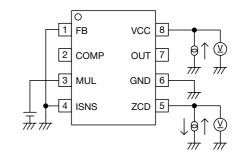

Item	Symbol	Measurement conditions	Circuit	Min.	Тур.	Max.	Units
Start-up power supply current	Iddoff	VCC=9V	1		30	50	μA
Power supply current	Iddon		1		1	2	mA
UVLO	100 011				-		
Under voltage lockout (UVLO)	VUVLO	VCC=H→L	1	8	9	10	V
Under voltage lockout release voltage	VUVLORelease	VCC=L→H	1	11.5	13.0	14.5	V
Under voltage lockout hysteresis voltage	VUVLOhys	VCC=H→L→H	1	3.3	4.0	4.7	V
VCC clamp voltage	VvcCclamp	Ivcc=1mA	2	25.5	28	30	V
ERR Amplifier							
Pullup resistance	RPULLUP		4	14	20	26	kΩ
FB pin bias current	Ifb	FB=1V	4	-100	-200	-300	μA
COMP pin source current	ICOMPSource	COMP=0V	4	-35	-70		μA
COMP pin sink current	ICOMPSink	COMP=5V	4	2.0	3.5		mA
Multiplier			l				
Amplification ratio K	К	MUL=1V, FB=COMP=2.25V	5	0.53	0.75	0.97	v
	VMUL		5	0~2.5	0~3.5		V
Multiplier input voltage	VCOMP		5	1.25~2.5	1.25~3.5		V
Multiplier clamp voltage	VMULclamp	MUL=3.5V, FB=COMP=2.75V	5	2.2	2.6		v
Zero current detect			1				
ZCD detection voltage	VZCDDET	ZCD=3V→0V	6	1.3	1.5	1.8	V
ZCD Input high clamp voltage	VZCDclampH	Izcd=1mA	2	19.5	21	22.5	V
ZCD Input low clamp voltage	VZCDclampL	Izcd=-1mA	2	-0.9	-0.6	-0.4	V
Cyrrent sense comparator							
Delay time	IISNS	FB=1.5V ISNS=0V→3V	5		200	400	ns
Drive			1	1			
On resistance (sink)	RONsink		3		8	12	Ω
On resistance (source)	RONsource		3		10	15	Ω
Output rise time	Trise	Cout=1000pF Guaranteed by design	3		60	120	ns
Output fall time	Tfall	Cout=1000pF Guaranteed by design	3		30	70	ns
Restart timer	·				I		
Deley time	Trestart		6	100	200	400	μs
Zero Power Detection				1			
Zero power detection voltage	VZERO	COMP=2V→0V	6	0.7	1.0	1.3	V

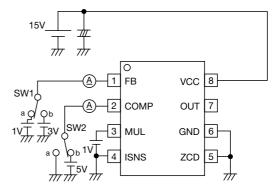
Electrical Characteristics (Except where noted otherwise Ta=25°C, VCC=15V)

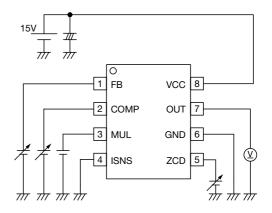

Item	Symbol	Measurement conditions	Circuit	Min.	Тур.	Max.	Units		
FB OVP Detection									
FB OVP detection voltage	VFBOVP	FB=1V→5V	6	3.0	3.5	4.0	V		
FB OVP detection deley time	Tfbovp		6	50	100	200	ms		
FB short Detection									
FB Short detection voltage	VFBSVP	FB=1V→0V	6	0.3	0.5	0.7	V		
FB Short detection hysteresis voltage	VFBSVPhys	FB=1V→0V→1V	6	0,.1	0.2	0.3	V		
Over Power Detection									
Over Power detection voltage	VISOPP	MUL=0V, ISNS=0V→5V	5	4.0	4.5	5.0	v		
Thermal Shut Down									
TSD detection temp.	TDET	Guaranteed by design			150		°C		
TSD release temp.	TRELEASE	Guaranteed by design			130		°C		

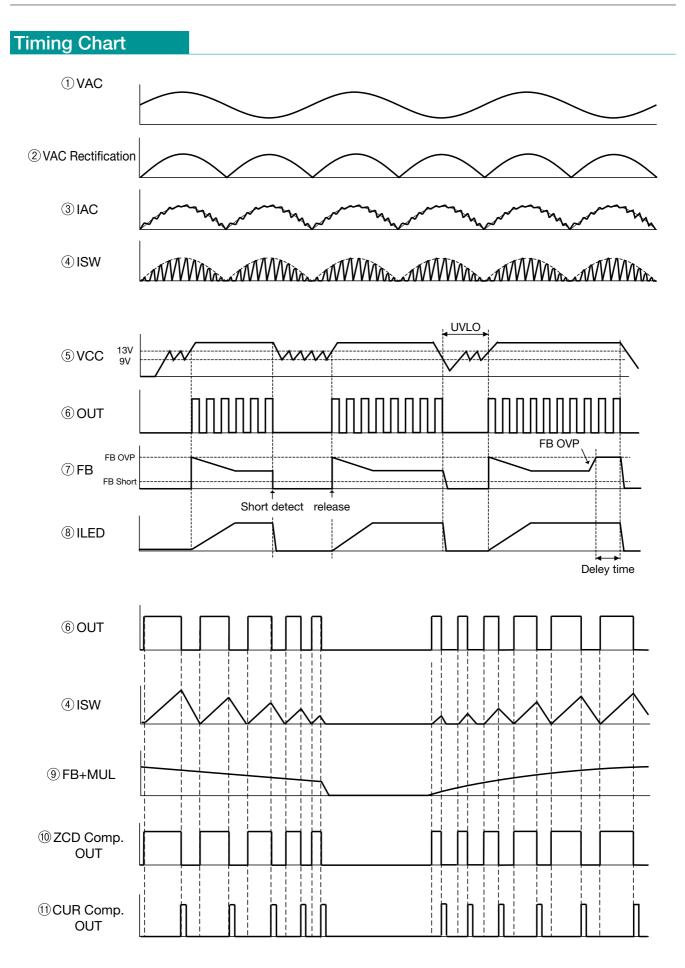
Measuring Circuit


1 IDDOFF, IDDON, VUVLO, VUVLORelease, VUVLOhys

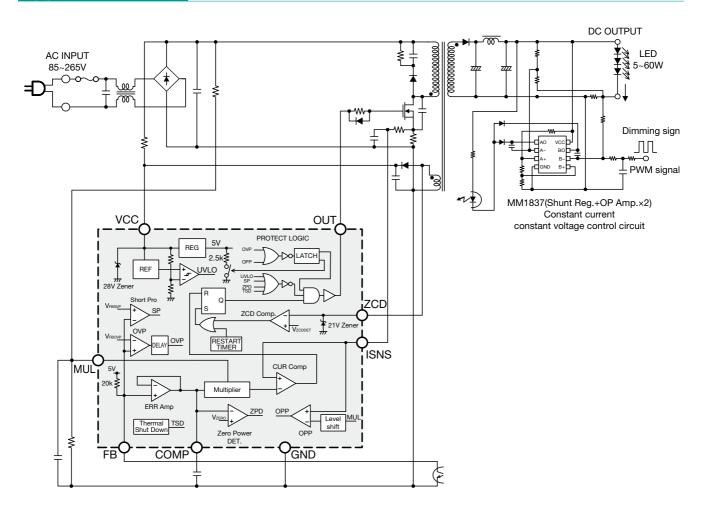

3 RONsink, RONsource, Trise, Tfall

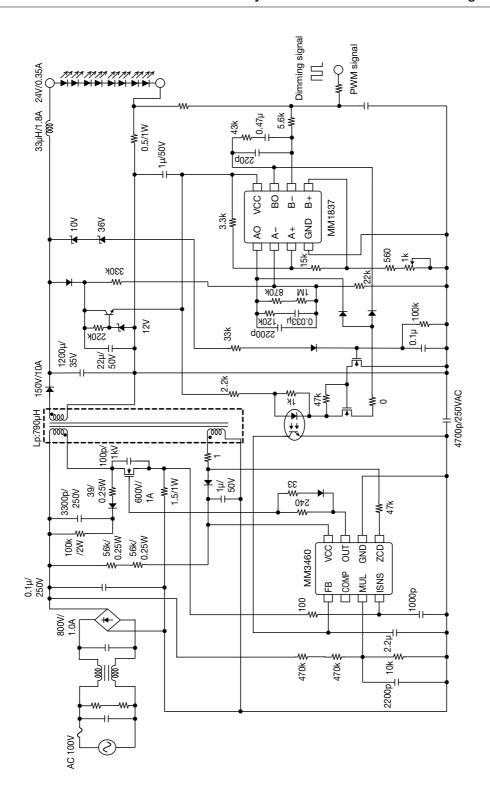

5 K, VMUL, VCOMP, VMULCIAMP, VISOPP, TISNS

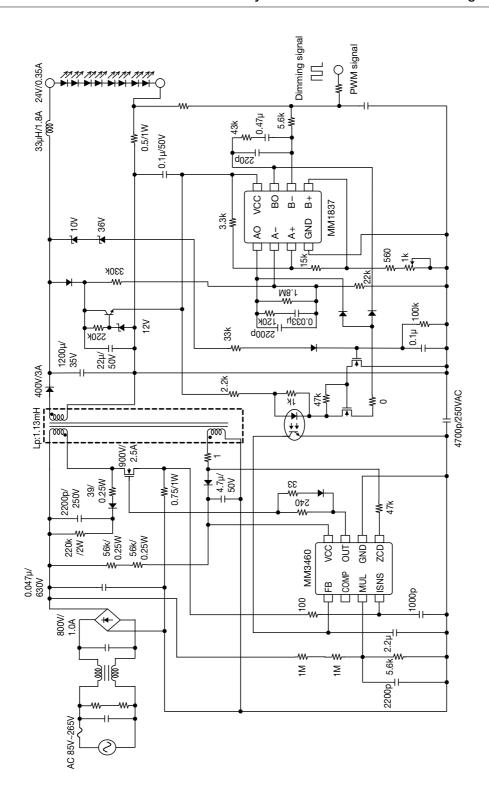

(2) V_{VCCclamp}, V_{ZCDclampH}, V_{ZCDclampL}

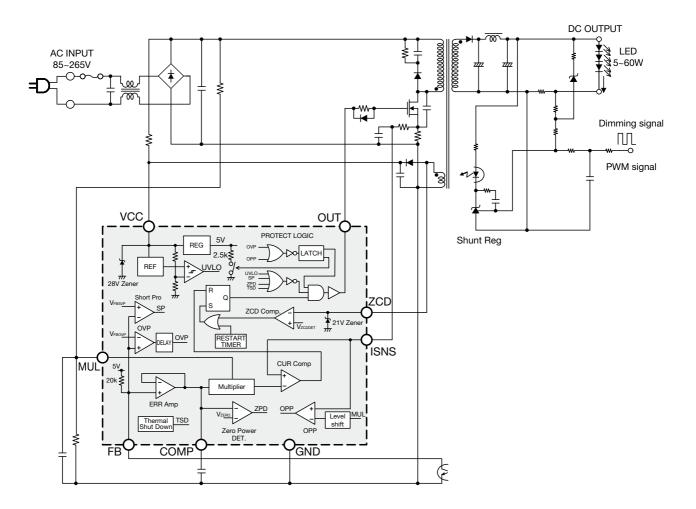


(4) RPULLUP, IFB, ICOMPSource, ICOMPSink

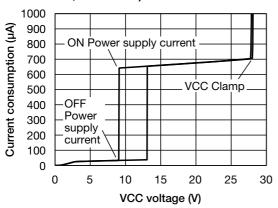



6 VZCDDET, TRESTART, VZERO, VFBSVP, VFBSVPhys, VFBOVP, TFBOVPhys

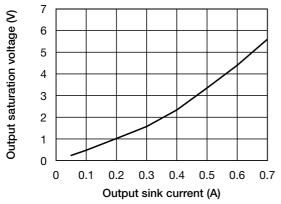

Application Circuit

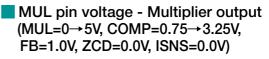

caution : We shall not be liable for any trouble or damage caused by using this circuit.

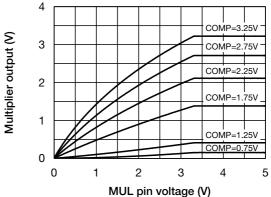
In the event a problem which may affect industrial property or any other rights of us or a third party is encountered during the use of information described in these circuit, we shall not be liable for any such problem, nor grant a license therefore.

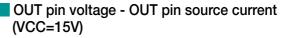

caution : We shall not be liable for any trouble or damage caused by using this circuit.

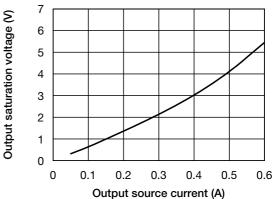
In the event a problem which may affect industrial property or any other rights of us or a third party is encountered during the use of information described in these circuit, we shall not be liable for any such problem, nor grant a license therefore.

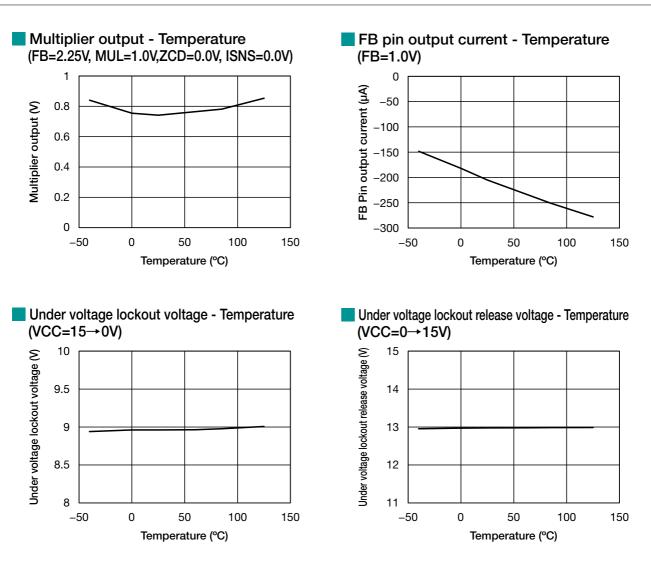


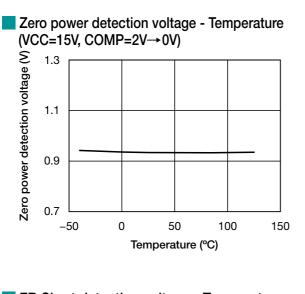

Characteristics

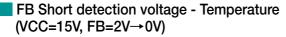

VCC voltage - Current consumption (VCC=0→30V→0V, FB=1.0V, MUL=1.0V, ZCD=0.0V, ISNS=0V)

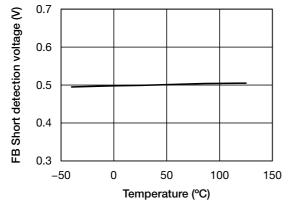


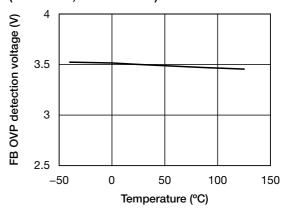


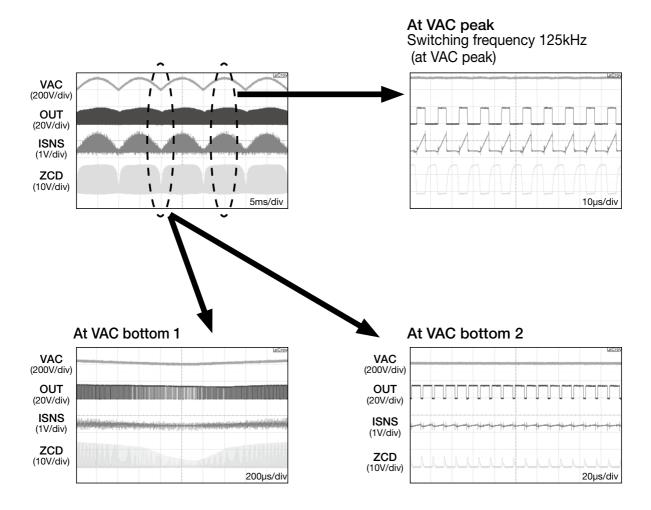




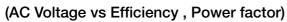


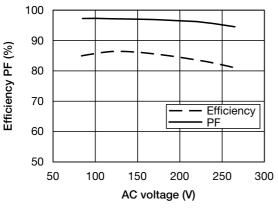




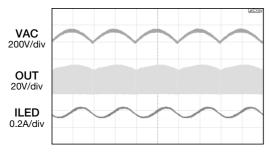


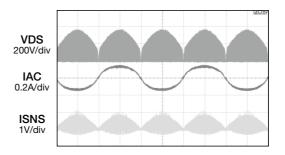
FB OVP detection voltage - Temperature (VCC=15V, FB=2V→5V)

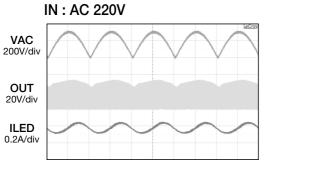


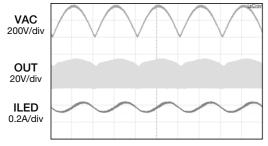

Basic Operation Waveforms

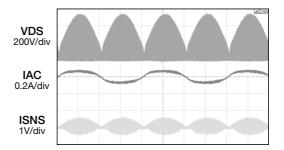
Input; AC=100V/50Hz, Output; 8LEDs/350mA→Efficiency; 87%, Power factor; 99%

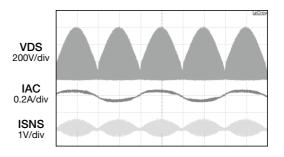


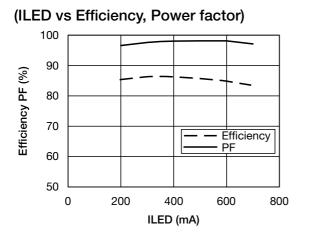

Line regulation AC 85~265V (World wide input demo board) 8LEDs/350mA

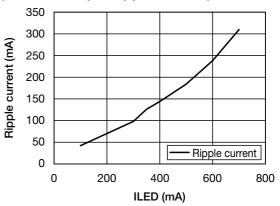


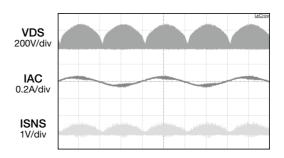

IN: AC 100V

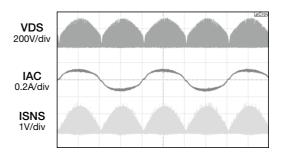


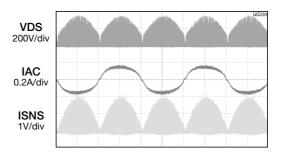




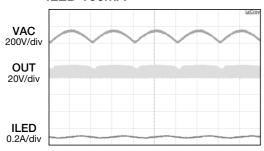


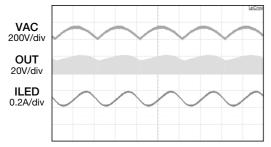



Line regulation AC 85~265V (World Wide Input Demo Board) 8LEDs/50mA



(ILED vs Output ripple current)




ILED 100mA

ILED 350mA

ILED 500mA

