Step-up DC-DC Converter IC

Monolithic IC MM3333XN

Outline

This IC is a step-up DC-DC converter with automatic PWM/PFM switching function.

A step-up DC-DC converter can be configured by using only coil, capacitor, and diode as external components.

It is optimal for applications for mobile equipment that will need high efficiency due to characteristics of small package or low current consumption.

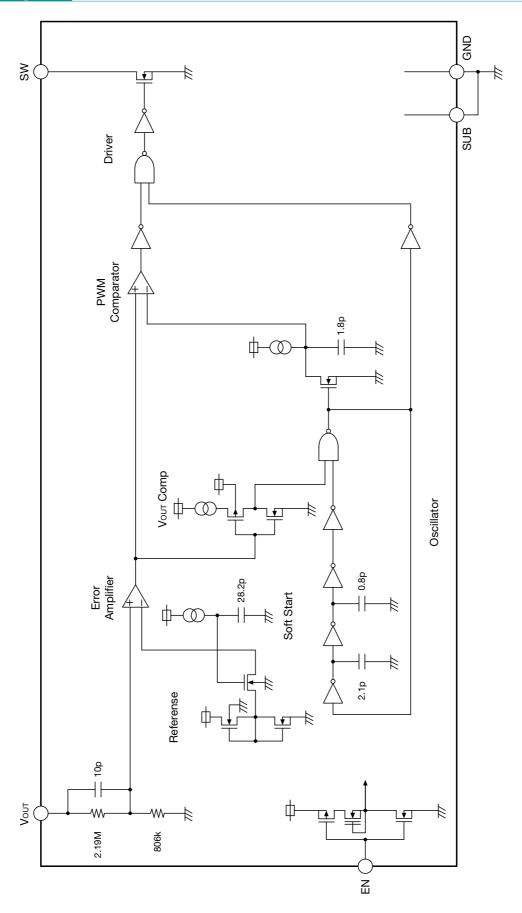
Also with an automatic PWM/PFM switching function, decrease of efficiency by current consumption of IC during low load is prevented.

Features

- 1. Step-up is possible from input voltage of 1.8 V, so operations are possible with only one battery.
- 2. It has realized high efficiency with low current consumption and PFM operation.
- 3. Adopted small package.

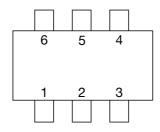
Package

SOT-26B


Applications

- 1. Power supply for mobile equipment such as digital still cameras, electronic organizers, PDA, etc.
- 2. Power supply for audio equipment such as portable CD, MD, etc.
- 3. Power supply for microprocessor

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.


The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications

Block Diagram

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Pin Assignment

EN	
Vout	
NC	
GND	
SUB	
SW	

SOT-26B (TOP VIEW)

Pin Description

Pin No.	Pin name	I/O	Pin description Internal equivalent circuit dia			
1	EN	Input	Enable pin for ON/OFF	Vout ————————————————————————————————————		
2	Vout	Input	Output voltage feedback PIN /VDD PIN			
3	NC		No connection			
4	GND	Output	Ground PIN			
5 (Note)	SUB		Substrate PIN			
6	SW		Power switch PIN	Vout SW M		

(Note): The Pin 5 this product is SUB, so connect the pin to Ground.

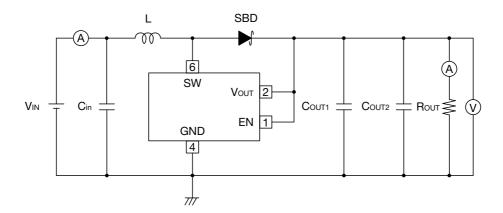
Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Absolute Maximum Ratings (Except where noted otherwise Ta=25°C)

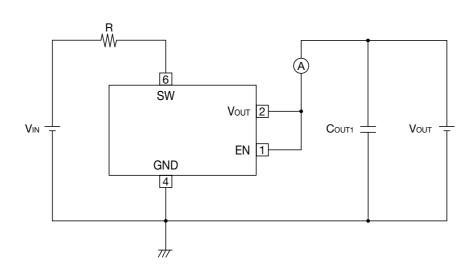
Item	Symbol	Ratings	Units
Storage temperature	Tstg	-55~+150	°C
Operating temperature	T_{OPR}	-40~+85	°C
Vоит Voltage	$ m V_{OUT}$	-0.3~6	V
EN Voltage	$ m V_{EN}$	-0.3~6	V
SW Voltage	Vsw	-0.3~6	V
Power dissipation	Pd	150 (Alone)	mW

Recommended Operating Conditions (Except where noted otherwise Ta=25°C)

Item	Symbol	Ratings	Units
Operating supply voltage	V_{OP}	1.8~5.5	V
Operating temperature	Тор	-40~+85	°C


Electrical Characteristics (Except where noted otherwise V_{IN}=2.4V, Ta=25°C)

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
Output voltage	Vout	I _{OUT} =10mA	3.123	3.200	3.277	V
Starting output voltage	V _{ST1}	Iout=1mA			0.9	V
Oscillation start voltage	V _{ST2}	No external parts, voltage appilied to Vour			0.8	V
Holding output voltage	$V_{ m HLD}$	I_{OUT} =1mA, Judged by decreasing V_{IN} voltage gradually	0.7			V
Supply current 1	I _{DD1}	Vout=3.0V		74.3	123.8	μA
Supply current 2	$\mathbf{I}_{\mathrm{DD2}}$	Vout=3.7V		9.5	18.9	μA
Supply current 3	I_{DD3}	$V_{\rm EN}$ = $0V$			0.5	μA
Switching current	Isw	Vsw=0.4V	144	231		mA
Switching transistor leak current	Iswq	$V_{SW}=V_{OUT}=5.5V$			0.5	μA
Line reguration	∠Vouti	V _{IN} =1.2V~1.8V		30	60	mV
Load reguration	∠Vout2	Iout=0.01mA~15mA		30	60	mV
Output voltage temperature characteristics	$\triangle V_0 / \triangle T$	-40°C≤T≤85°C		±50		ppm/°C
Oscillator frequency	fosc	Vout=3.0V	212.5	250	287.5	kHz
Maximum duty cycle	Max Duty	Vout=3.0V	70	78	85	%
EN pin "High" Input voltage	V_{ENH}	$V_{\rm EN}$ =0 \rightarrow 5.5 V	0.9			V
EN pin "Low" Input voltage	VENL	$V_{\rm EN}=5.5 { ightharpoonup} 0V$			0.3	V
EN pin "High" Input current	I _{ENH}	$V_{\rm EN}$ =5.5 V	-0.1		0.1	μA
EN pin "Low" Input current	IENL	Ven=0V	-0.1		0.1	μA
Soft start time	Tss		1.8	3.6	7.2	ms
Efficiency	EFFI			85		%


Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

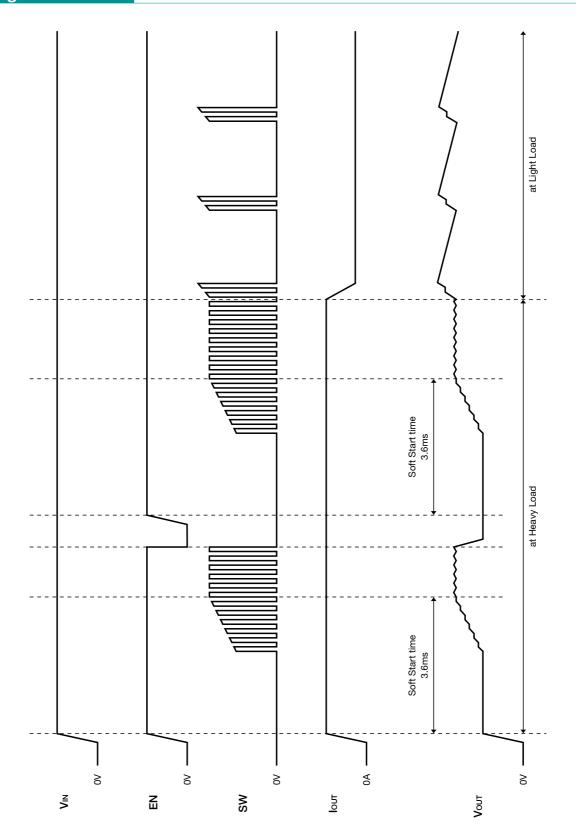
Measuring Circuit

1.

2.

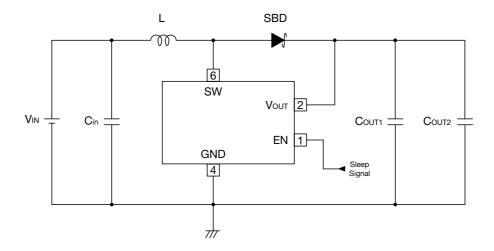
· Used parts when mesurement

 C_{in} : 10µF(GRM21BR60J106/Murata Manufacturering Co., Ltd.)


Cout1 : 47µF(NOJT476M006/AVX Corporation) Cout2 : 0.1µF(EMK107BJ104/Taiyo Yuden Co., Ltd.) : 10µH(C4–K1.8R/MITSUMI ELECTRIC Co., LTD)

SBD : (RSX101VA/ROHM Co., Ltd.)

: 300Ω R


Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

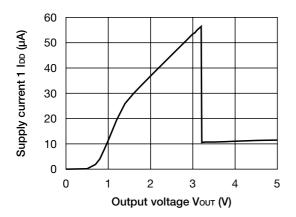
Timing Chart

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

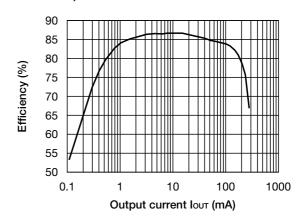
Application Circuit

· Recommended parts

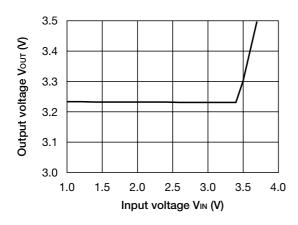
: 10µF(GRM21BR60J106/Murata Manufacturering Co., Ltd.) C_{in}

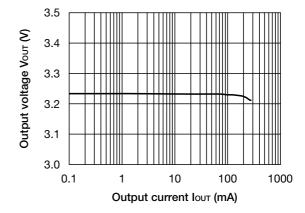

C_{OUT1} : 47µF(NOJT476M006/AVX Corporation) Cout2 : 0.1µF(EMK107BJ104/Taiyo Yuden Co., Ltd.) : 10µH(C4-K1.8R/MITSUMI ELECTRIC Co., LTD)

SBD : (RSX101VA/ROHM Co., Ltd.)

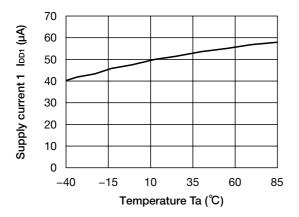

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Characteristics


Supply current 1 - Output voltage V_{OUT}=0→5.0V

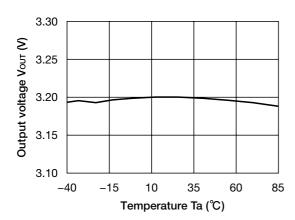

Efficiency - Output current V_{IN}=2.4V, V_{OUT}=3.2V

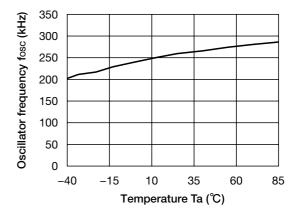
Output voltage - Input voltage $V_{IN}=4.0V\rightarrow 0V$, $I_{OUT}=10mA$



Output voltage - Output current V_{IN}=2.4V, I_{OUT}=0.1→300mA

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.


Supply current 1 - Temperature $V_{OUT}=3.0V$, Ta=-40~85°C


Supply current 2 - Temperature $V_{OUT}=3.7V$, Ta=-40~85°C

Output voltage - Temperature V_{IN}=2.4V, I_{OUT}=10mA, Ta=-40~85°C

Oscillator frequency - Temperature $V_{OUT}=3.0V$, Ta=-40~85°C

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.