White LED Driver ICs

Monolithic IC MM3097

Outline

This IC is a white LED driver IC. It is a step-up DC-DC converter IC designed to drive up to 7 LEDs and suitable for backlight drivers. Feedback voltage is as low as 95mV, which can reduce power consumption in a current set resistor. A small 0.22µF capacitor can be used, so that not only space but costs can be reduced.

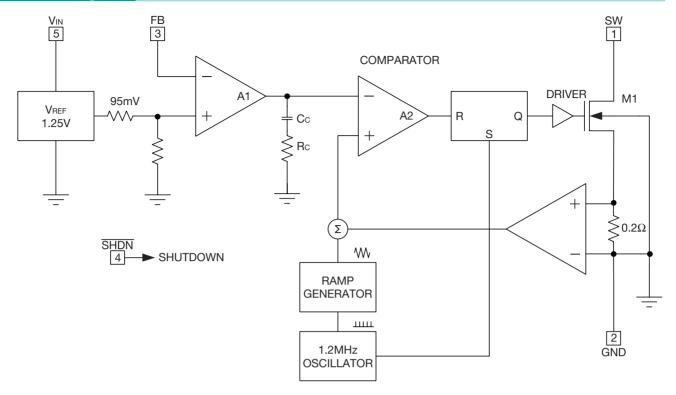
Features

1. Enables to drive up to 7 white LEDs in a series connection

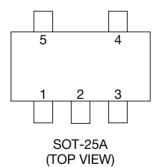
2.5 to 6V 2. Input voltage range 3. Shutdown current 0.1µA typ. 4. High efficiency 85% typ. 5. Luminance control PWM system

6. Feedback voltage 95mV

Package


SOT-25A

Applications


- 1. Cell phones
- 2. Digital video cameras
- 3. Digital still cameras
- 4. Portable game devices
- 5. PDA

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Block Diagram

Pin Assignment

1	SW	
2	GND	
3	FB	
4	SHND	
5	Vin	

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Pin Description

Pin No.	Pin name	Functions
		Switch pin.
1	SW	Connect inductor/diode here.
		Minimize trace area at this pin to reduce EMI.
2	GND	GND pin.
		Feedback pin.
3	FB	Reference voltage is 95mV.
		Connect cathode of lowest LED and resistor.
		Shutdown pin.
4	SHDN	Tie to 1.5V or higher to enable device;
		0.4V or less to disable device.
5	Vin	Input supply pin.
3	V IN	Must be locally bypassed.

Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Ratings	Units
Storage temperature	Tstg	-65~+150	°C
Operating temperature	Topr	-40~+85	°C
Input voltage	Vinmax	8	V
SW voltage	VSWMAX	36	V
FB voltage	VFBMAX	8	V
SHDN voltage	VSHDNMAX	8	V
Allowable loss	PD	150	mW

Note: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.

Recommended Operating Conditions

Item	Symbol	Ratings	Units
Operating voltage	Vop	2.5~6	V

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

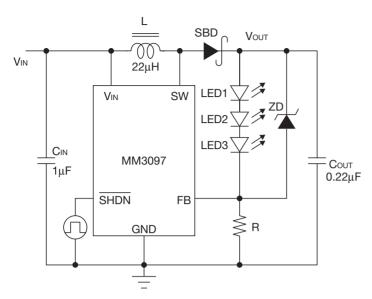
Electrical Characteristics 1 (Except where noted otherwise Ta=+25°C, VIN=3V, VSHDN=3V)

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
Feedback voltage	V_{FB}	3LEDs, ILED=15mA	86	95	104	mV
FB pin bias current	Ifb		10	45	100	nA
Supply current	Iss			1.0	2.0	mA
Supply current	155	SHDN=0V		0.1	1.0	μA
Switching frequency	fsw		0.8	1.2	1.6	MHz
Maximum duty cycle	MaxDuty		85	90		%
Switch current limit	Iswlmt			320		mA
Switch VCESAT	VCESAT	Isw=250mA		350		mV
Switch leakage current	Iswleak	Vsw=5V		0.01	5	μA
SHDN voltage high	VSHDNH		1.5			V
SHDN voltage low	VSHDNL				0.4	V
SHDN pin bias current	Ishdn			6		μA

Note: The MM3097 is guaranteed to meet specifications from 0°C to 70°C.

Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls.

Electrical Characteristics 2 (Except where noted otherwise Ta=+25°C, Vin=3V, Vshdn=3V)


Item	Symbol	Measurement conditions		Тур.	Max.	Units
Feedback voltage	V_{FB}	3LEDs, feedback resistor=6.3Ω	86	95	104	mV
FB pin bias current	Ifb		10	45	100	nA
Supply ourrent	Iss			1.0	2.0	mA
Supply current	155	SHDN=0V		0.1	1.0	μA
Switching frequency	fsw			1.2	1.6	MHz
Maximum duty cycle	MaxDuty		85	90		%
Switch current limit	ISWLMT			320		mA
Switch VCESAT	VCESAT	Isw=250mA		350		mV
Switch leakage current	Iswleak	V _{SW} =5V		0.01	5	μA
SHDN voltage high	Vshdnh		1.5			V
SHDN voltage low	VSHDNL				0.4	V
SHDN pin bias current	Ishdn			6		μA

Note: The MM3097 is guaranteed to meet specifications from 0°Cto 70°C.

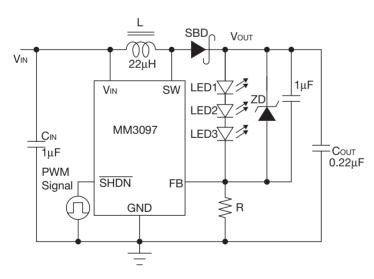
Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls.

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Measuring Circuit

The following is recommended application for MM3097.

Recommend application


L: MITSUMI ELECTRIC C3-Y1.5R (22µH)

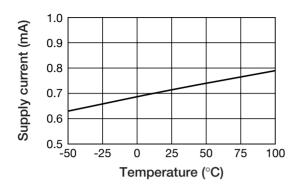
SBD: PHILIPS PMEG4005AEA

ZD: ROHM UDZS ☐B (zener voltage > Vout)

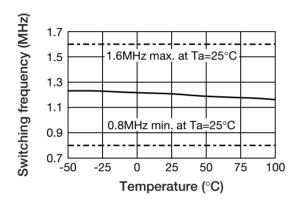
LED: NICHIA NSCW215

Application Circuit

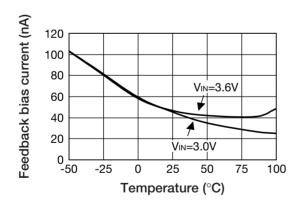
No internal soft-start circuit is included in

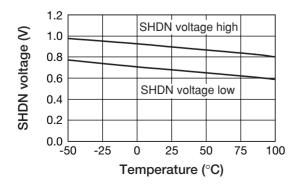

The capacitor in left figure is recommended for MM3097 if necessity. Dimming control is possible with the PWM signal applied to the SHDN pin.

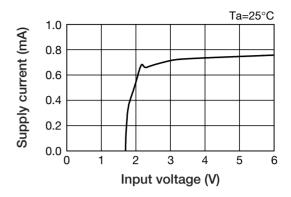
The magnitude of the PWM signal should be higher than the SHDN voltage high.

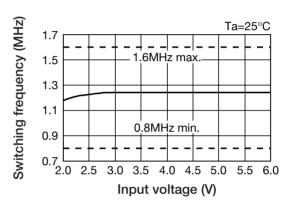

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

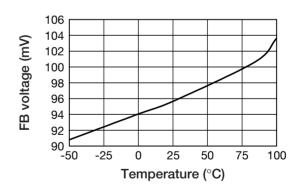
Characteristics

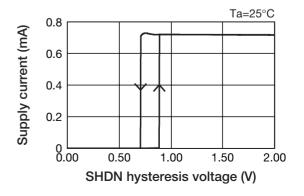

Quiescent current


Switching frequency

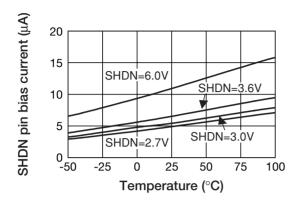

Feedback bias current


SHDN voltage

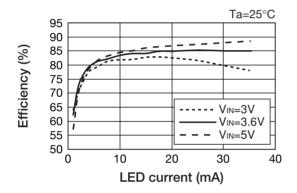

Quiescent current


Switching frequency

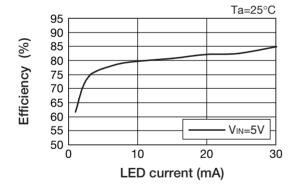
FB voltage

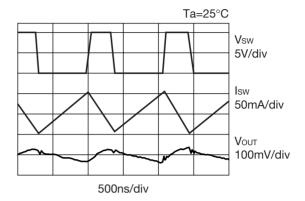


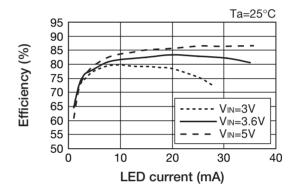
SHDN hysteresis voltage



Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.


SHDN pin bias current


■ Efficiency (3LEDs)


■ Efficiency (7LEDs)

Switching waveform

■ Efficiency (4LEDs)

Efficiency

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

LED Current Control

The LED current is controlled by the feedback resistor (R in Measuring Circuit).

The feedback reference is 95mV, so the LED current is 95mV/R.

ILED=95mV/R

The relation between LED current and resistance R is shown in Table.1.

Table.1 Selection of Resistance R

ILED (MA)	R (Ω)
5	19
10	9.5
12	8.0
15	6.3
20	4.5

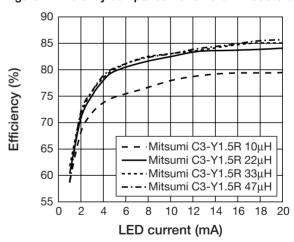
Applications Information

Inductor Selection

A 22µH inductor is recommended for MM3097 applications.

Small size and high efficiency are the major concerns for most applications.

Inductors with low core losses and small DCR (copper wire resistance) at 1.2MHz are good choices for applications.


Some inductors in this category with small size are listed in Table.2.

The efficiency comparison of different inductors is shown in Figure.1.

Table.2 Recommend Inductors

Part number	DCR (mΩ)	Current rating (mA)	Manufacturer
C3-Y1.5R 22µH	660	550	
C3-Y1.5R	275	000	
10μΗ	273	900	Kyushu Mitsumi
C3-Y1.5R 33µH	995	500	Tiy uonu miasanii
C3-Y1.5R	1000	400	
47μΗ	1220	430	

Figure.1 Efficiency comparison of different inductors

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.

The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.