250mA/300mA LDO Monolithic IC MM1886 Series

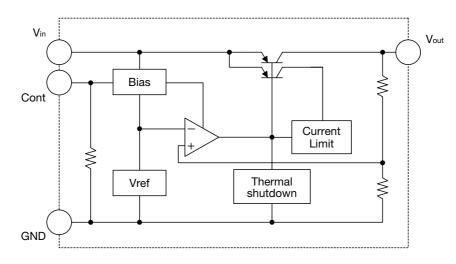
Outline

This IC is a 250mA/300mA Low dropout regulator IC with ON/OFF control. The IC applies to a standard home equipments, for a maximum operating voltage is 14V.

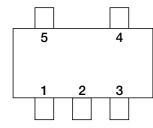
Features

- 1. Maximum operating voltage
- 2. Output current
- 3. No load input current
- 4. Input current(OFF)
- 5. Output voltage range
- 6. Output voltage accuracy
- 7. Dropout voltage
- 8. Line regulation
- 9. Load regulation
- 10. Ripple rejection
- 11. Output Capacitor
- 12. ON/OFF control
- 13. Thermal shutdown

14V 250mA (Vo=1.5V~2.9V) 300mA (Vo=3.0V~5.0V) 75μA typ. 1μA max. 1.5~5.0V ±2% 400mV typ. (Io=250mA) 450mV typ. (Io=300mA) 0.1%/V max. 75mV max. (Io=1~250mA) 90mV max. (Io=1~300mA) 70dB typ. (f=1kHz) 1μF


Package

SOT-25A SOT89-5A SSON-6A

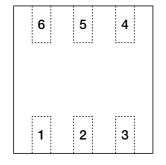

Applications

- 1. TV
- 2. BD recorder
- 3. Printer
- 4. Game

Block Diagram

Pin Assignment

SOT-25A


(TOP VIEW)

1	Cont
2	GND
3	NC
4	Vout
5	Vin

	5			$\overline{}$	4	
L	1		2		3	
	•		_		•	

1	NC
2	GND
3	Cont
4	Vin
5	Vout

SOT89-5 (TOP VIEW)

1	Vin
2	NC
3	Vout
4	NC
5	GND
6	Cont

SSON-6A (TOP VIEW)

Pin Description

SOT-25A

Pin No.	Pin name	Functions	Internal equivalent circuit diagram
1	Cont	ON/OFF Control pinContVoutHONLOFFCont pin must be connectedwith Vin pin, if it is not used.	250k 500k
2	GND	Ground	
3	NC	No connection	
4	Vout	Output pin The capacitor must be connected with output pin more than 1µF.	
5	Vin	Input pin The capacitor is required to connect with input pin more than 1µF.	Internal circuit

SOT89-5A

Pin No.	Pin name	Functions	Internal equivalent circuit diagram
1	NC	No connection	
2	GND	Ground	
3	Cont	ON/OFF Control pinContVoutHONLOFFCont pin must be connectedwith Vin pin, if it is not used.	250k
4	Vin	Input pin The capacitor is required to connect with input pin more than 1µF.	Internal circuit
5	Vout	Output pin The capacitor must be connected with output pin more than 1µF.	

SSON-6A

Pin No.	Pin name	Functions	Internal equivalent circuit diagram
1	Vin	Input pin The capacitor is required to connect with input pin more than 1µF.	Internal circuit
2,4	NC	No connection	
3	Vout	Output pin The capacitor must be connected with output pin more than 1µF.	
5	GND	Ground	
6	Cont	ON/OFF Control pin Cont Vout H ON L OFF Cont pin must be connected with Vin pin, if it is not used.	250kΩ

Absolute Maximum Ratings (Except where noted otherwise Ta=25°C)

Item	Symbol	Ratin	Ratings		
Storage Temperature	Tstg	-55~+	-55~+150		
Operating Temperature	Topr	-40~+	-85	°C	
Supply Voltage	Vin	-0.3~+15		V	
Cont PIN Voltage	Vcont	-0.3~+15		v	
Output Current	Iout	400		mA	
		350(Note1)	SOT-25A		
Power Dissipation	Pd	1000(Note2)	SOT89-5A	mW	
		1300(Note3)	SSON-6A		

Note1 : With the PC Board of glass epoxy. ($60 \times 40 \times 1.6$ mm)

Note2 : With the PC Board of glass epoxy. (114.3 \times 76.2 \times 1.6mm)

Note3 : With the PC Board of glass epoxy. $(25 \times 25 \times 1.6 \text{mm})$

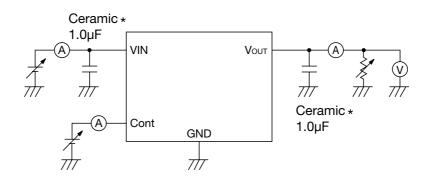
Recommended Operating Conditions (Except where noted otherwise Ta=25°C)

Item	Symbol	Ratings	Units
Output Current	Iout	0~250 (Vo=1.5~2.9V)	m۸
Output Current		0~300 (Vo=3.0~5.0V)	mA
Operating Voltage	Vop	1.8~14	V

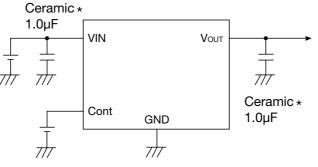
Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
No-Load Input Current	Icc	Io=0mA Vcont=VDD		75	120	μA
Input Current (OFF)	Iccoff	Vcont=0V		0	1	μA
Output Voltage (Note2)	VOUT	Io=1mA	×0.98		×1.02	V
Drepout Valtage (Nate?)	Vie	Vin=Vo-0.2V, Io=250mA		0.40	0.70	v
Dropout Voltage (Note3)	Vio	Vin=Vo-0.2V, Io=300mA		0.45	0.75	V
Line Regulation	⊿V1	Vin=Vo+1~14V, Io=1mA			0.1	%/V
Lood Degulation	⊿V2	Io=1~250mA (1.5V~2.9V)		18	75	mV
Load Regulation		Io=1~300mA (3.0V~5.0V)		20	90	IIIV
Vout Temperature Coefficient (Note1)	⊿Vout/⊿T	Ta=-40~+85°C		±100		ppm/°C
Ripple Rejection (Note1)	RR	f=1kHz Vripple=1Vp-p, I ₀ =10mA		70		dB
Cont Pin Input Current	Icont	Vcont=1.6V		3	12	μA
Cont Pin High Threshold Level	VcontH		1.6			V
Cont Pin Low Threshold Level	VcontL				0.3	V

Electrical Characteristics 1 (Except where noted otherwise Vin=Vo(typ.)+1V, Io=1mA, Vcont=1.6V, Ta=25°C)

Note1 : The parameter is guaranteed by design.


Note2 : Please refer to another page.

Note3 : The parameter is not guaranteed in the model less than VOUT=2V.


Electrical Characteristics 2 (Except where noted otherwise Vin=Vo(typ.)+1V, Io=1mA, Vcont=1.6V, Ta=25°C)

Model No.	Measurement Conditions	Out	Output voltage (V)			
		Min.	Тур.	Max.		
MM1886A15		1.470	1.5	1.530		
MM1886A16		1.568	1.6	1.632		
MM1886A17		1.666	1.7	1.734		
MM1886A18		1.764	1.8	1.836		
MM1886A19		1.862	1.9	1.938		
MM1886A20		1.960	2.0	2.040		
MM1886A21		2.058	2.1	2.142		
MM1886A22		2.156	2.2	2.244		
MM1886A23		2.254	2.3	2.346		
MM1886A24		2.352	2.4	2.448		
MM1886A25		2.450	2.5	2.550		
MM1886A26		2.548	2.6	2.652		
MM1886A27		2.646	2.7	2.754		
MM1886A28		2.744	2.8	2.856		
MM1886A29		2.842	2.9	2.958		
MM1886A30		2.940	3.0	3.060		
MM1886A31	Io=1mA	3.038	3.1	3.162		
MM1886A32		3.136	3.2	3.264		
MM1886A33	10=111A	3.234	3.3	3.366		
MM1886A34		3.332	3.4	3.468		
MM1886A35		3.430	3.5	3.570		
MM1886A36		3.528	3.6	3.672		
MM1886A37		3.626	3.7	3.774		
MM1886A38		3.724	3.8	3.876		
MM1886A39		3.822	3.9	3.978		
MM1886A40		3.920	4.0	4.080		
MM1886A41		4.018	4.1	4.182		
MM1886A42		4.116	4.2	4.284		
MM1886A43		4.214	4.3	4.386		
MM1886A44		4.312	4.4	4.488		
MM1886A45		4.410	4.5	4.590		
MM1886A46		4.508	4.6	4.692		
MM1886A47		4.606	4.7	4.794		
MM1886A48		4.704	4.8	4.896		
MM1886A49		4.802	4.9	4.998		
MM1886A50		4.900	5.0	5.100		

Measuring Circuit

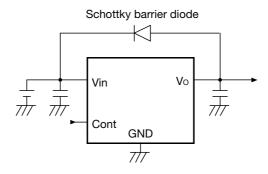
Application Circuit

***** Temperature Characteristics : B

(Reference example of external parts)

 \cdot Output capacitor Ceramic capacitor 1.0 μ F

- · Input capacitor Ceramic capacitor 1.0µF
- In the event a problem which may affect industrial property or any other rights of us or a third party is encountered during the use of information described in these circuit, we shall not be liable for any such problem, nor grant a license therefore.


 \cdot Note

1. There is a possibility with deterioration and destruction of IC when using it exceeding the absolute maximum rating.

The absolute maximum rating, Never exceed it.

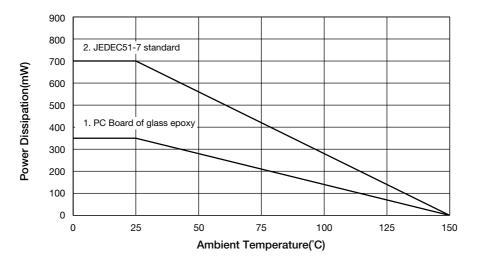
The functional operation is not assured.

- There is a possibility that it becomes impossible to maintain this performance and reliability IC original when using it exceeding recommended operation voltage.
 Please use it in recommended operation voltage.
- 3. Due to restrictions on the package power dissipation, the output current value may not be satisfied. Attention should be paid to the power dissipation of the package when the output current is large or the voltage between Iinput and Output is high.
- 4. The output capacitor is required between output and GND to prevent oscillation.
- The ESR of capacitor must be defined in ESR stability area. It is possible to use a ceramic capacitor without ESR resistance for output. The ceramic capacitor must be used more than 1.0µF and B temperature characteristics.
- 6. The wire of VDD and GND is required to print full ground plane for noise and stability.
- 7. The input capacitor must be connected a distance of less than 1cm from input pin.
- 8. It is able to an unstable operation when you use the capacitor with intense capacitance change The capacitor has the dependency at the power-supply voltage and the temperature. The capacity value changes by the environment used. Please evaluate IC in the set.
- 9. There is a possibility of becoming an unstable operation. when using it with Dropout voltage no margin. Please evaluate it enough when there is no margin in Dropout voltage.
- 10. In case the output voltage is above the input voltage, the overcurrent flow by internal parasitic diode from output to input. In such application, the external bypass diode must be connected between output and input pin.

- 11. The overcurrent protection circuit of the vertical type is built into this IC.
- 12. There is a possibility that IC generates heat when the output terminal is short-circuited. However, the thermal shutdown circuit operates, and it will do operation that protects IC. The thermal shutdown circuit is designed only to shut the IC off to prevent thermal runaway. Do not continue to use the IC in an environment where the operation of this circuit is assumed. The characteristic changes depending on the substrate condition. Please evaluate IC in the set.
- The hysteresis circuit is not built into the thermal shutdown circuit.
 It returns automatically in temperature returned after it shuts down by self-generation of heat.
 After it returns, it shuts down again by self-generation of heat.
 It is necessary to change the environment used (IC consumption,temperature) if it operates in upper cycle.

About Power Dissipation

The Power dissipation change if board to mount IC change because radiative heat fix at board. It is reference data below, Evaluate IC in the set.


MM1886AxxNRE

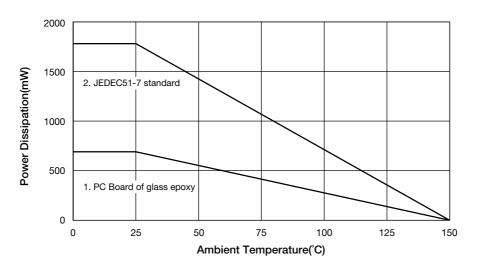
- 1. PC Board of glass epoxy

 Board size
 60mm×40mm t=1.6mm Copper foil area 60%

 Power dissipation
 350mW Ta=25°C
- 2. JEDEC51-7 standard

Board size	114.3mm×76.2mm t=1.6mm Copper foil area 80%
Power dissipation	700mW Ta=25°C (It is reference value measured by JEDEC51-7 standard.)

MM1886AxxPRE

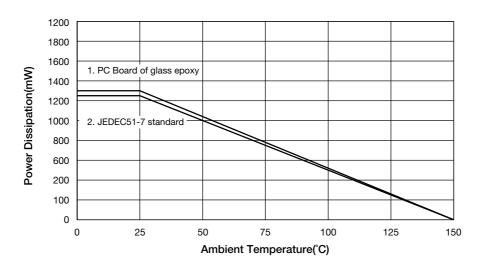

1. PC Board of glass epoxy

Board size	50mm×50mm t=1.6mm	Copper foil area 80%
Power dissipation	690mW Ta=25°C	

2. JEDEC51-7 standard

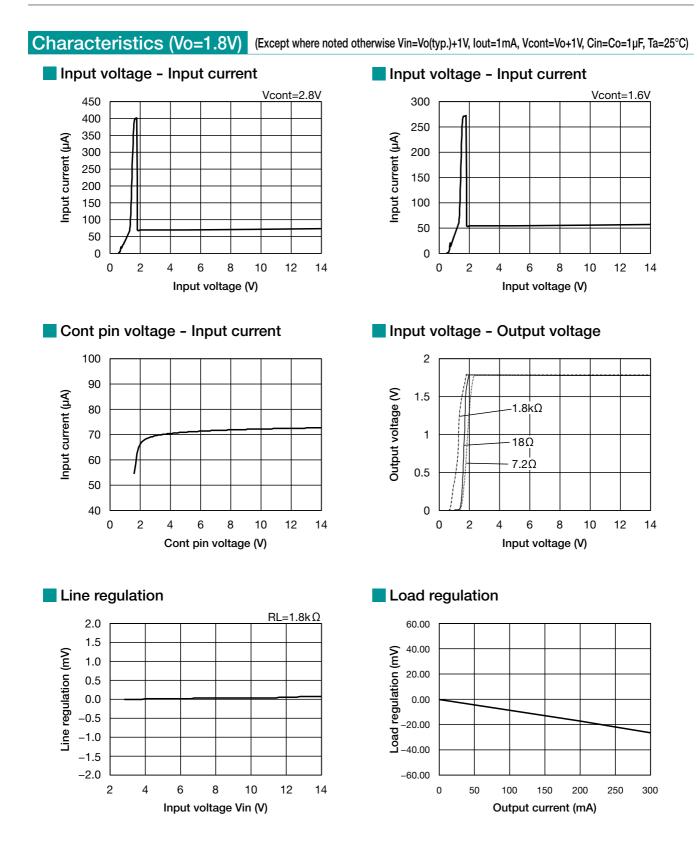
Board size	114.3mm×76.2mm t=1.6mm Copper foil area 80%
Power dissipation	1780mW Ta=25°C (It is reference value measured by JEDEC51-7 standard.)

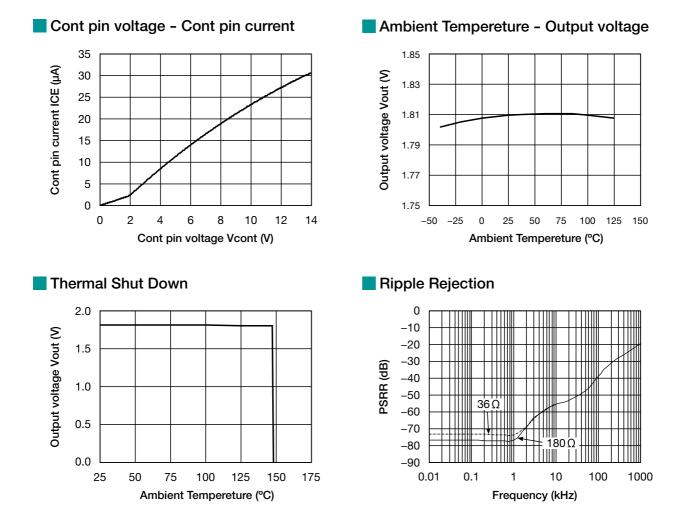
- - - -



MM1886AxxRRE

1.	PC Board of glass ep	оху	
	Board size	25mm×25mm t=1.6mm	Copper foil area 80%
	Power dissipation	1300mW Ta=25°C	


2. JEDEC51-7 standard


Board size Power dissipation 114.3mm×76.2mm t=1.6mm Copper foil area 80% 1250mW Ta=25°C (It is reference value measured by JEDEC51-7 standard.)

It is recommended to layout the VIA for heat radiation in the GND pattern of reverse (of IC) when there is the GND pattern in the inner layer (in using multiplayer substrate).

By increasing these copper foil pattern area of PCB, Power dissipation improves.

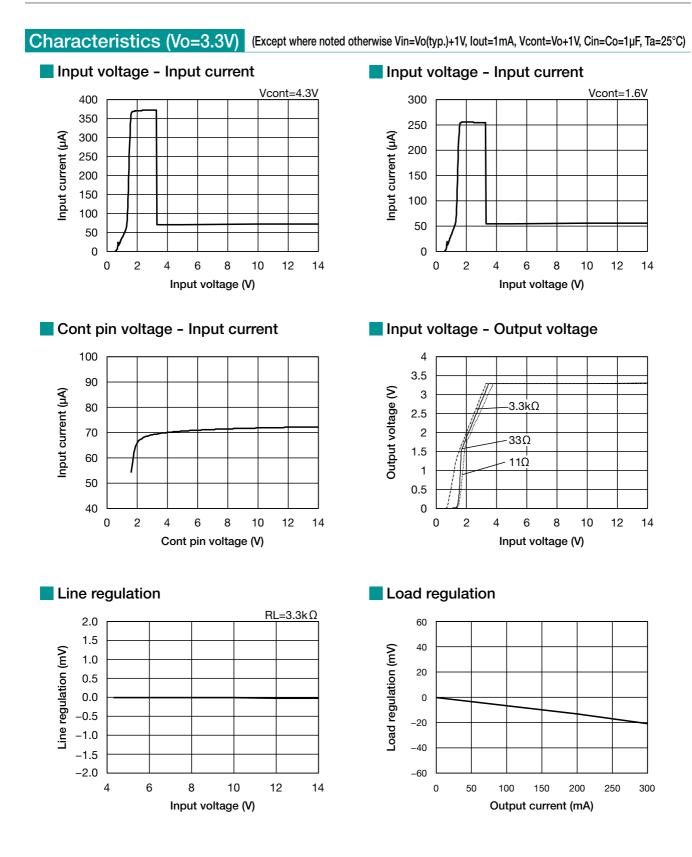
Turn-On Transient response

Vin=2.8V	Vin=2.8V, Vcont=0→2.8V, RL=1.8kΩ											
2µS/div												
						Vcor	nt:2V,	/div :				
	L					hanna	******					
						V	/o:1V,	/div				
	~											
	ſ											
						lin:0	.2A/	div				
	wI				·····		~~~~~	·				
	1											

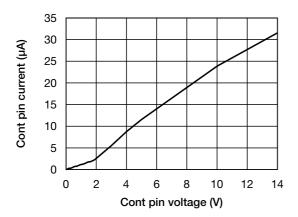
Turn-Off Transient response

Vin=2	2.8V	, Vcc	nt=2	.8→	0V,	RL=	1.8k	Ω	
	······						2	2mS	/div
							Vcor	nt:2V	/div
*****	*****								
			-	Wedgeward					
							V	o:1V	/div

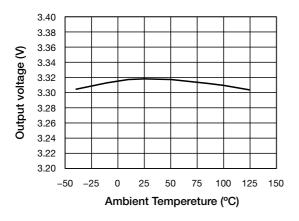
Load Transient response

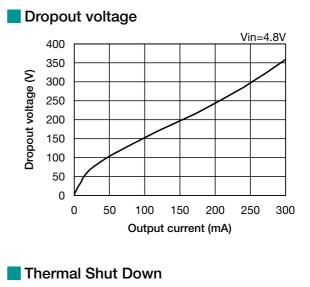

Vin=Vcc	ont=2.8	/, lo=	1mA	⇔10	0mA	, Cou	t=1µl	F
50µS	s/div							
						lo:50)mA	/div
*****		·						
		·						
					····· ,	Vout:().1V	/div
						· · · ·		
		+						

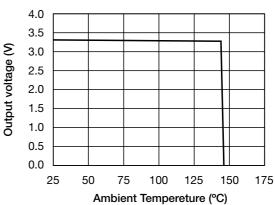
Vin=Vcont=2.8V, Io=1mA⇔200mA, Cout=1µF


50µS	/div					
			 lo	p: 100)mA	/div ⁻
		 		Vout:().1V	/div

Vin=Vcont=2.8V, Io=1mA⇔300mA, Cout=1µF


50j	JS/d	iv					
			 	 lo	:2 0 0)mA	/div
			 	 ,	, ,		/ - II
			 	 h	Vout:	D.1V	aiv




Cont pin voltage - Cont pin current

Ambient Tempereture - Output voltage

Ripple Rejection 0 -10 -20 -30 PSRR (dB) -40 -50 66 Ω -60 -70 -80 -90 0.1 10 100 1000 0.01 1 Frequency (kHz)

Turn-On Transient response

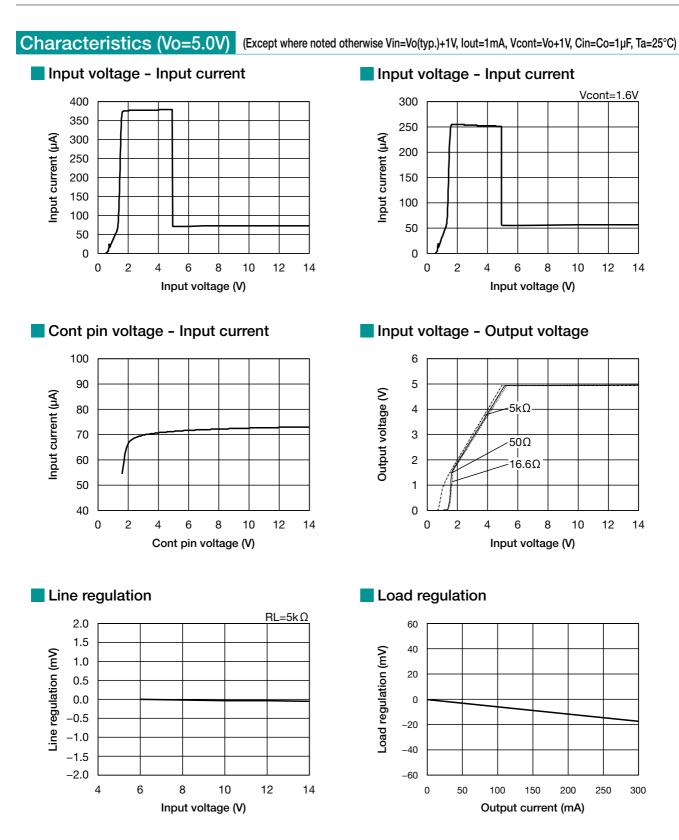
Vin=4.3	V_{in} =4.3V, V_{cont} =0→2V, RL=3.3kΩ											
10mS/c	liv											
						Vcor	nt:5V	/div				
	ŗ					V	₀:2V	/div				
	h					lin:0	.5A/	aiv				

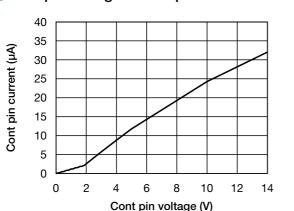
Turn-Off Transient response

Vin=4.3	Vin=4.3V, Vcont=2→0V, RL=3.3kΩ											
						2	2mS	/div				
	7											

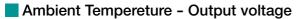
						Vcor	: 1t:5V,	/div [.]				
ļ												
							21/	/div [.]				
		and a state of the	-	-		v	o:∠ v,					

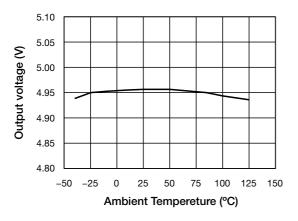
Load Transient response

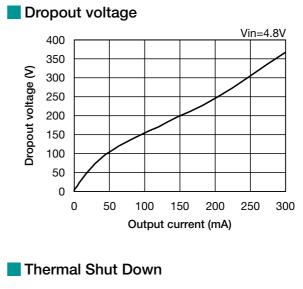

Vin=Vcont=	Vin=Vcont=4.3V, Io=1mA⇔100mA, Cout=1µF											
50µS/d	iv											
						lo:50)mA	/div				
						1000000	nutana					
					····· ,).1V	/div				
					·	v out:	J. I V/	uiv				
	-				~							

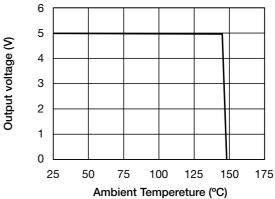

Vin=Vcont=4.3V, Io=1mA⇔200mA, Cout=1µF

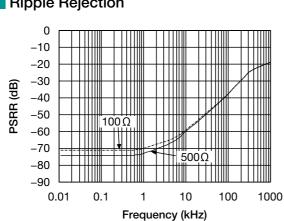
50µ	JS/d	liv						
					lo	p: 10 (DmA	/div ⁻
			 		,	Vout:().1V	/div
			 ~~~~	*****	~			


#### Vin=Vcont=4.3V, Io=1mA⇔300mA, Cout=1µF


50µS/c	liv					
		 	 Ic	:2 <b>0</b> 0	)mA	/div
		 	 h	Vout:(	).1V	/div
	þ	 				





Cont pin voltage - Cont pin current











Ripple Rejection

#### Turn-On Transient response

Vin=6	Vin=6.0V, V _{cont} =0→2V, RL=5.0kΩ									
10µS	/div	·····								
							Vcor	nt:5V	/div	
		[								
		/					V	o:2V	/div	
		F~h					lin:0	.5A/	div	

#### Turn-Off Transient response

Vin=6.0V	, Vcc	nt=2	<b>→</b> 0\	/, RL	_=5.0	OkΩ		
						2	2mS	/div
l								
						Vcor	: nt:5V,	/div
						• 001		an
		~~~						
				-		- V	o:2V	/div
								·····

Load Transient response

Vin=Vcont=6.0V, Io=1mA⇔100mA, Cout=1µF									
50µS/c									
	-								
	1					lo:50)mA	/div	
*********								*****	
	·····				,	i Vout:().1V	/div	
			يسمنن						

Vin=Vcont=6.0V, Io=1mA⇔200mA, Cout=1µF

50µ	JS/d	liv					
				····· lo	5: 10()mA	/div ⁻
			 	 ~	:).1V	/div
*****	and a new particular the		 	 			

Vin=Vcont=6.0V, Io=1mA⇔300mA, Cout=1µF

50µS/	div					
		 	 Ic	:2 0 0)mA	/div
		 	 ,	Vout:().1V	/div
	·	 	 ~			
	<u> </u>	 	 			