200mA LDO

Monolithic IC MM1836 Series

Outline

This IC is a 200mA Low dropout regulator IC with ON/OFF control.

The IC applies to a standard home equipments, for a maximum operating voltage is 14V.

Package is a small SOT-25.

Features

1. Maximum operating voltage

2. Output current

3. No load input current

4. Input current(OFF)

5. Output voltage range

6. Output voltage accuracy

7. Dropout voltage

8. Line regulation

9. Load regulation

10. Ripple rejection

11. Output Capacitor

12. ON/OFF control

13. Thermal shutdown

14V

200mA

75µA typ.

1µA max.

1.5~5.0V

±2%

300mV typ. (Io=200mA)

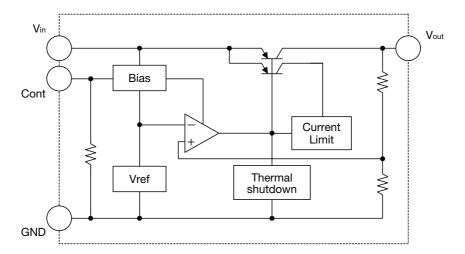
0.1%/V max.

60mV max. (Io=1~200mA)

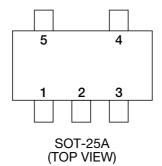
70dB typ. (f=1kHz)

1µF

Package


SOT-25A

Applications


- 1. TV
- 2. BD recorder
- 3. Printer
- 4. Game

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Block Diagram

Pin Assignment

1	Cont
2	GND
3	NC
4	Vout
5	Vin

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Pin Description

Pin No.	Pin name	Functions	Internal equivalent circuit diagram
1	Cont	ON/OFF Control pin Cont Vout H ON L OFF Cont pin must be connected with Vin pin, if it is not used.	250k 500k 7/77 7/77
2	GND	Ground	
3	NC	No connection	
4	Vout	Output pin The capacitor must be connected with output pin more than 1µF.	
5	Vin	Input pin The capacitor is required to connect with input pin more than 1µF.	Internal circuit

Absolute Maximum Ratings (Except where noted otherwise Ta=25°C)

Item	Symbol	Ratings	Units
Storage Temperature	Tstg	-55~+150	°C
Operating Temperature	Topr	-40~+85	°C
Supply Voltage	Vin	-0.3~+15	77
Cont PIN Voltage	Vcont	-0.3~+15	v
Output Current	Iout	Iout 350 mA	
Power Dissipation	Pd	350(Note1)	mW

Note1: With the PC Board of glass epoxy. $(60 \times 40 \times 1.6 \text{mm})$

Recommended Operating Conditions (Except where noted otherwise Ta=25°C)

Item	Symbol	Ratings	Units
Output Current	Iout	0~200	mA
Operating Voltage	Vop	1.8~14	V

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

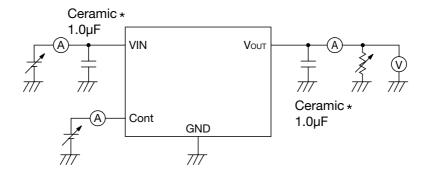
Electrical Characteristics 1 (Except where noted otherwise Vin=Vo(typ.)+1V, Io=1mA, Vcont=1.6V, Ta=25°C)

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
No-Load Input Current	Icc	Io=0mA Vcont=VDD		75	120	μА
Input Current(OFF)	Iccoff	V _{Cont} =0V		0	1	μA
Output Voltage (Note3)	VOUT	Io=1mA	×0.98		×1.02	V
Dropout Voltage (Note4)	Vio	Vin=Vo-0.2V, Io=200mA		0.3	0.5	V
Line Regulation	⊿V1	Vin=Vo+1~14V, Io=1mA			0.1	%/V
Load Regulation	⊿V2	Io=1~200mA		15	60	mV
Vout Temperature Coefficient (Note2)	∠Vout/∠T	Ta=-40~+85°C		±100		ppm/°C
Ripple Rejection (Note2)	RR	f=1kHz Vripple=1Vp-p, Io=10mA		70		dB
Cont Pin Input Current	Icont	Vcont=1.6V		3	12	μA
Cont Pin High Threshold Level	VcontH		1.6			V
Cont Pin Low Threshold Level	VcontL				0.3	V

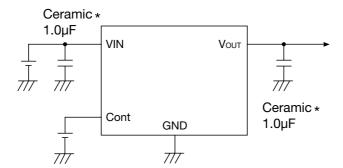
Note2: The parameter is guaranteed by design.

Note3: Please refer to another page.

Note4: The parameter is not guaranteed in the model less than VOUT=2V.


Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Electrical Characteristics 2 (Except where noted otherwise Vin=Vo(typ.)+1V, Io=1mA, Vcont=1.6V, Ta=25°C)


Model No.	Measurement Conditions	Output Voltage (V)			
		Min.	Тур.	Max.	
MM1836A15		1.470	1.5	1.530	
MM1836A16		1.568	1.6	1.632	
MM1836A17		1.666	1.7	1.734	
MM1836A18		1.764	1.8	1.836	
MM1836A19		1.862	1.9	1.938	
MM1836A20		1.960	2.0	2.040	
MM1836A21		2.058	2.1	2.142	
MM1836A22		2.156	2.2	2.244	
MM1836A23		2.254	2.3	2.346	
MM1836A24		2.352	2.4	2.448	
MM1836A25		2.450	2.5	2.550	
MM1836A26		2.548	2.6	2.652	
MM1836A27		2.646	2.7	2.754	
MM1836A28	Io=1mA	2.744	2.8	2.856	
MM1836A29		2.842	2.9	2.958	
MM1836A30		2.940	3.0	3.060	
MM1836A31		3.038	3.1	3.162	
MM1836A32		3.136	3.2	3.264	
MM1836A33	10-1111/1	3.234	3.3	3.366	
MM1836A34		3.332	3.4	3.468	
MM1836A35		3.430	3.5	3.570	
MM1836A36		3.528	3.6	3.672	
MM1836A37		3.626	3.7	3.774	
MM1836A38		3.724	3.8	3.876	
MM1836A39		3.822	3.9	3.978	
MM1836A40		3.920	4.0	4.080	
MM1836A41		4.018	4.1	4.182	
MM1836A42		4.116	4.2	4.284	
MM1836A43		4.214	4.3	4.386	
MM1836A44		4.312	4.4	4.488	
MM1836A45		4.410	4.5	4.590	
MM1836A46		4.508	4.6	4.692	
MM1836A47		4.606	4.7	4.794	
MM1836A48		4.704	4.8	4.896	
MM1836A49		4.802	4.9	4.998	
MM1836A50		4.900	5.0	5.100	

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Measuring Circuit

Application Circuit

* Temperature Characteristics: B

(Reference example of external parts)

· Output capacitor Ceramic capacitor 1.0µF · Input capacitor Ceramic capacitor 1.0µF

· In the event a problem which may affect industrial property or any other rights of us or a third party is encountered during the use of information described in these circuit, we shall not be liable for any such problem, nor grant a license therefore.

· Note

- There is a possibility with deterioration and destruction of IC when using it exceeding the absolute maximum rating. The absolute maximum rating, Never exceed it. The functional operation is not assured.
- 2. There is a possibility that it becomes impossible to maintain this performance and reliability IC original when using it exceeding recommended operation voltage.

Please use it in recommended operation voltage.

- Due to restrictions on the package power dissipation, the output current value may not be satisfied. Attention should be paid to the power dissipation of the package when the output current is large or the voltage between Iinput and Output is high.
- The output capacitor is required between output and GND to prevent oscillation.
- The ESR of capacitor must be defined in ESR stability area. It is possible to use a ceramic capacitor without ESR resistance for output. The ceramic capacitor must be used more than 1.0µF and B temperature characteristics.
- The wire of VDD and GND is required to print full ground plane for noise and stability.
- The input capacitor must be connected a distance of less than 1cm from input pin.

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.

The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications

- It is able to an unstable operation when you use the capacitor with intense capacitance change The capacitor has the dependency at the power-supply voltage and the temperature. The capacity value changes by the environment used. Please evaluate IC in the set.
- In case the output voltage is above the input voltage, the overcurrent flow by internal parasitic diode from output to input. In such application, the external bypass diode must be connected between output and input pin.
- 10. There is a possibility of becoming an unstable operation, when using it with Dropout voltage no margin. Please evaluate it enough when there is no margin in Dropout voltage.
- 11. The overcurrent protection circuit of the vertical type is built into this IC.
- 12. There is a possibility that IC generates heat when the output terminal is short-circuited. However, the thermal shutdown circuit operates, and it will do operation that protects IC. The thermal shutdown circuit is designed only to shut the IC off to prevent thermal runaway. Do not continue to use the IC in an environment where the operation of this circuit is assumed. The characteristic changes depending on the substrate condition. Please evaluate IC in the set.
- 13. The hysteresis circuit is not built into the thermal shutdown circuit. It returns automatically in temperature returned after it shuts down by self-generation of heat. After it returns, it shuts down again by self-generation of heat. It is necessary to change the environment used (IC consumption, temperature) if it operates in upper cycle.

About Power Dissipation

The Power dissipation change if board to mount IC change because radiative heat fix at board. It is reference data below, Evaluate IC in the set.

1. PC Board of glass epoxy


Board size 60mm×40mm t=1.6mm Copper foil area 60%

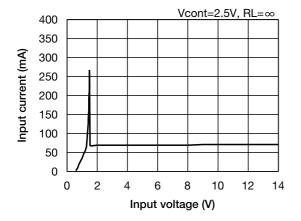
Power dissipation 350mW Ta=25°C

2. JEDEC51-7 standard

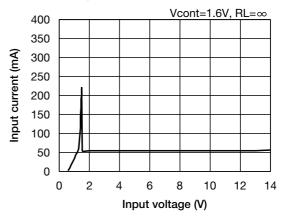
Board size 114.3mm×76.2mm t=1.6mm Copper foil area 80%

Power dissipation 700mW Ta=25°C (It is reference value measured by JEDEC51-7 standard.)

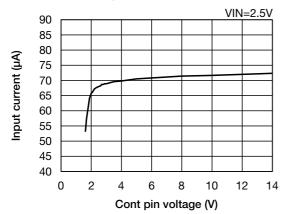
It is recommended to layout the VIA for heat radiation in the GND pattern of reverse (of IC) when there is the GND pattern in the inner layer (in using multiplayer substrate).

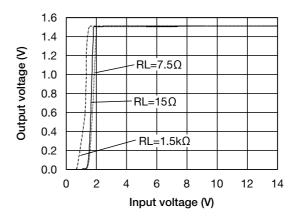

By increasing these copper foil pattern area of PCB, Power dissipation improves.

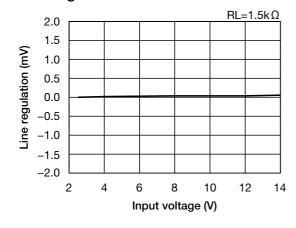
Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.

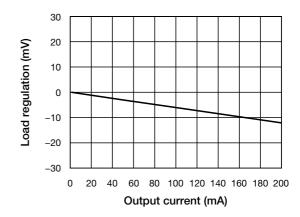

The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications

Characteristics (Vo=1.5V) (Except where noted otherwise Vin=Vo(typ.)+1V, lout=1mA, Vcont=Vo+1V, Cin=Co=1µF, Ta=25°C)

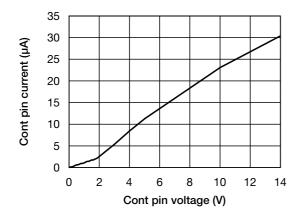

Input voltage - Input current


Input voltage - Input current

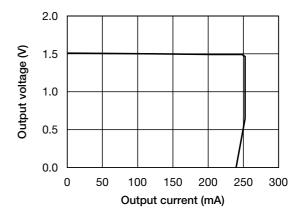

Cont pin voltage - Input current


Input voltage - Output voltage

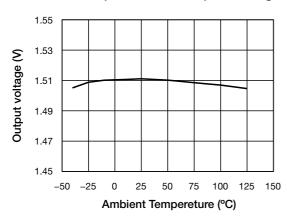
Line regulation

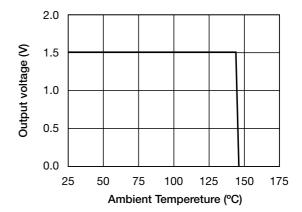


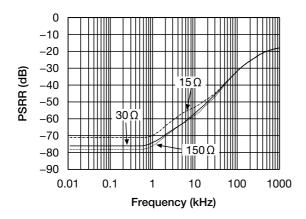
Load regulation



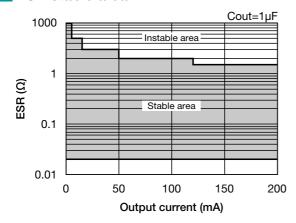
Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.


Cont pin voltage - Cont pin current

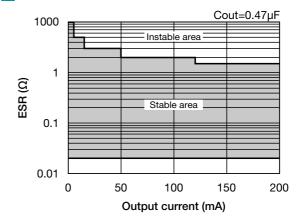

Current Limit


Ambient Tempereture - Output voltage

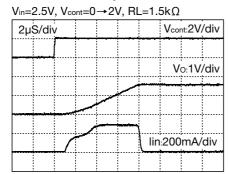
Thermal Shut Down

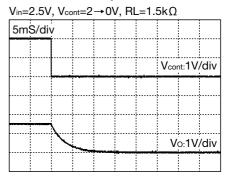


Ripple Rejection

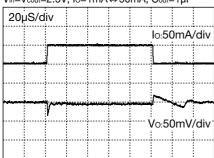


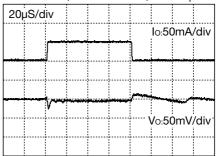
Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.


SR stable area

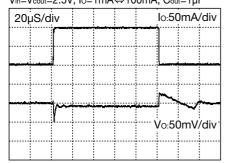

ESR stable area

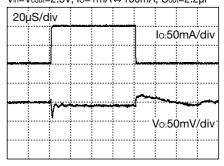
Turn-On Transient response

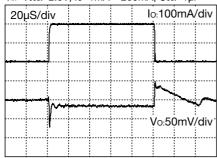

Turn-Off Transient response

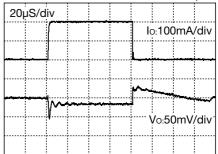

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Load Transient response

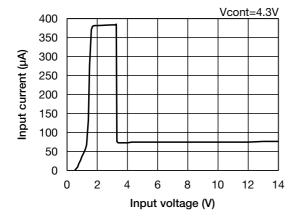

 $V_{in}=V_{cout}=2.5V$, $I_0=1mA\Leftrightarrow 50mA$, $C_{out}=1\mu F$

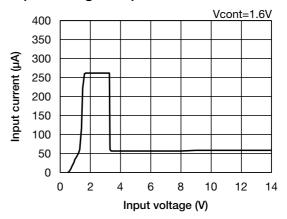

Vin=Vcout=2.5V, Io=1mA⇔50mA, Cout=2.2µF


 $V_{in}=V_{cout}=2.5V$, $I_0=1mA \Leftrightarrow 100mA$, $C_{out}=1\mu F$

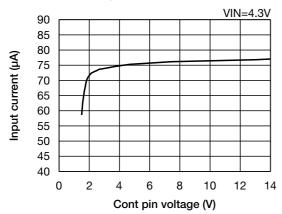

 $V_{in}=V_{cout}=2.5V$, $I_0=1mA\Leftrightarrow 100mA$, $C_{out}=2.2\mu F$

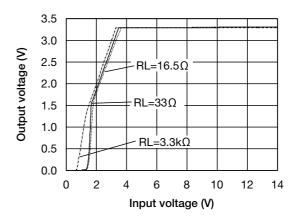
 $V_{in}=V_{cout}=2.5V$, $I_0=1mA \Leftrightarrow 200mA$, $C_{out}=1\mu F$

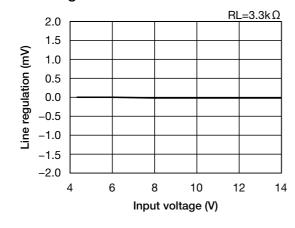

 $V_{in}=V_{cout}=2.5V$, $I_0=1mA \Leftrightarrow 200mA$, $C_{out}=2.2\mu F$

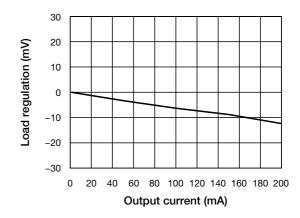

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Characteristics (Vo=3.3V) (Except where noted otherwise Vin=Vo(typ.)+1V, lout=1mA, Vcont=Vo+1V, Cin=Co=1µF, Ta=25°C)

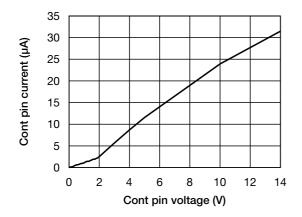

Input voltage - Input current


Input voltage - Input current

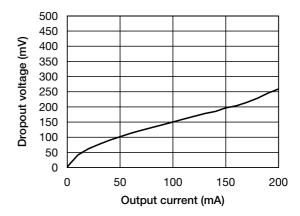

Cont pin voltage - Input current


Input voltage - Output voltage

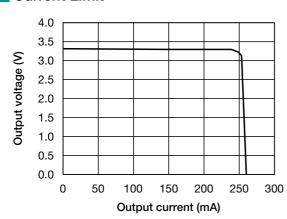
Line regulation

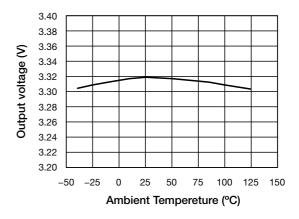


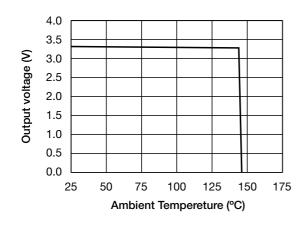
Load regulation

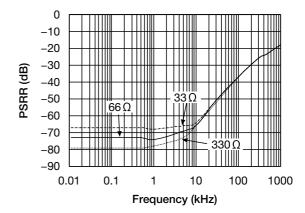


Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

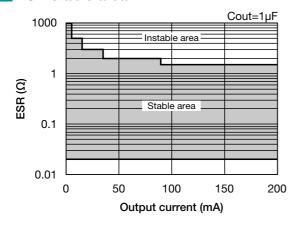

Cont pin voltage - Cont pin current


Output current - Dropout voltage

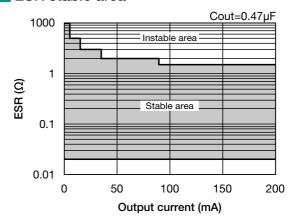

Current Limit


Ambient Tempereture - Output voltage

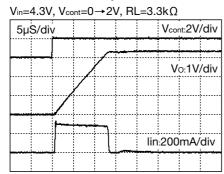
Thermal Shut Down

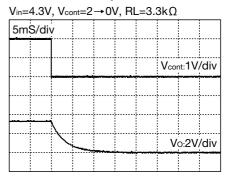


Ripple Rejection

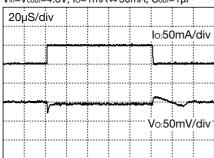


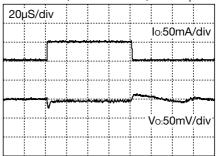
Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.


SR stable area

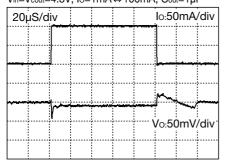

ESR stable area

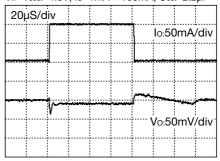
Turn-On Transient response

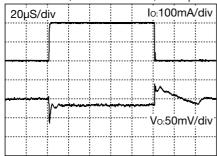

Turn-Off Transient response

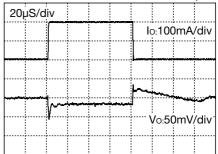

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Load Transient response

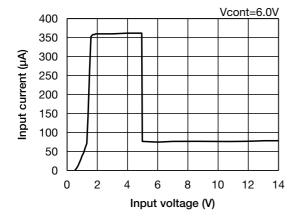

 $V_{in}=V_{cout}=4.3V$, $I_0=1mA\Leftrightarrow 50mA$, $C_{out}=1\mu F$

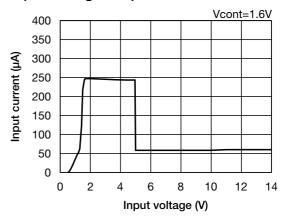

 $V_{in}=V_{cout}=4.3V$, $I_0=1mA\Leftrightarrow 50mA$, $C_{out}=2.2\mu F$


 $V_{in}=V_{cout}=4.3V$, $I_0=1mA \Leftrightarrow 100mA$, $C_{out}=1\mu F$

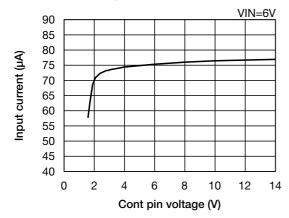

 $V_{in}=V_{cout}=4.3V$, $I_0=1mA\Leftrightarrow 100mA$, $C_{out}=2.2\mu F$

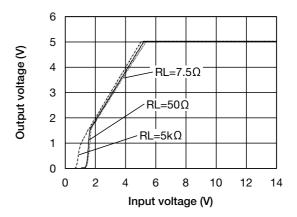
 $V_{in}=V_{cout}=4.3V$, $I_0=1mA \Leftrightarrow 200mA$, $C_{out}=1\mu F$

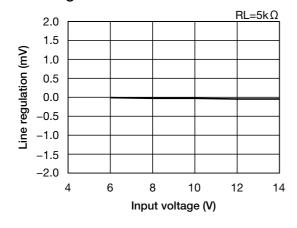

 $V_{in}=V_{cout}=4.3V$, $I_0=1mA \Leftrightarrow 200mA$, $C_{out}=2.2\mu F$

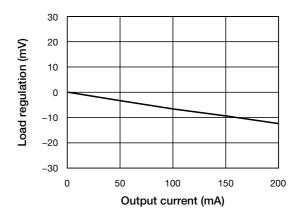

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Characteristics (Vo=5.0 V) (Except where noted otherwise Vin=Vo(typ.)+1V, lout=1mA, Vcont=Vo+1V, Cin=Co=1µF, Ta=25°C)

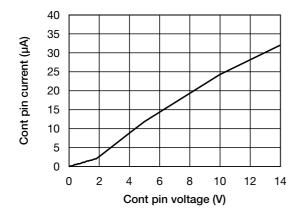

Input voltage - Input current


Input voltage - Input current

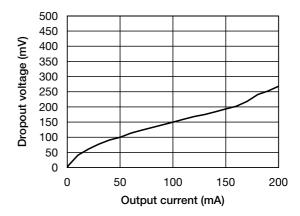

Cont pin voltage - Input current


Input voltage - Output voltage

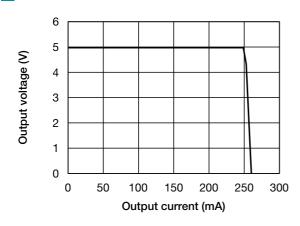
Line regulation

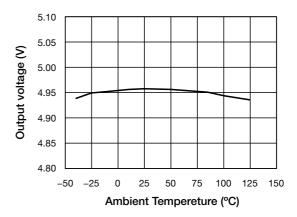


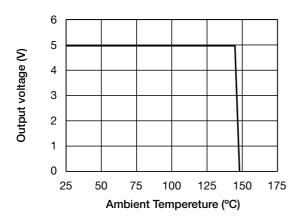
Load regulation

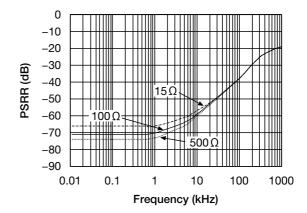


Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

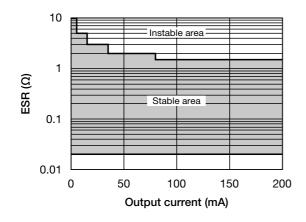

Cont pin voltage - Cont pin current


Output current - Dropout voltage

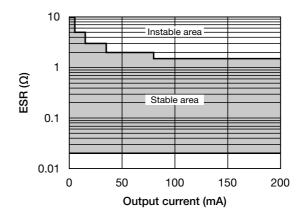

Current Limit


Ambient Tempereture - Output voltage

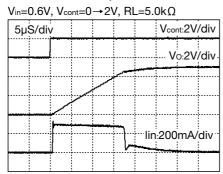
Thermal Shut Down

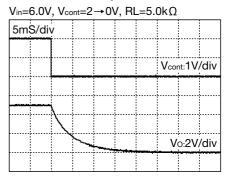


Ripple Rejection

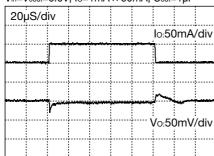


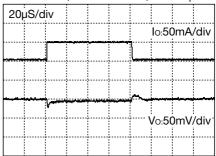
Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.


SR stable area

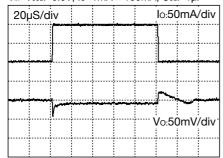

ESR stable area

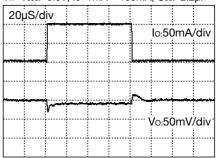
Turn-On Transient response

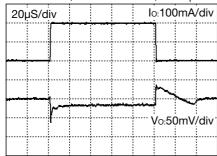

Turn-Off Transient response

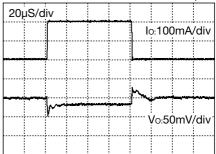

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Load Transient response


 $V_{in}=V_{cout}=6.0V$, $I_0=1mA\Leftrightarrow 50mA$, $C_{out}=1\mu F$


Vin=Vcout=6.0V, Io=1mA⇔50mA, Cout=2.2µF


 $V_{in}=V_{cout}=6.0V$, $I_0=1mA \Leftrightarrow 100mA$, $C_{out}=1\mu F$


 $V_{in}=V_{cout}=6.0V$, $I_0=1mA\Leftrightarrow 100mA$, $C_{out}=2.2\mu F$

 $V_{in}=V_{cout}=6.0V$, $I_0=1mA \Leftrightarrow 200mA$, $C_{out}=1\mu F$

 $V_{in}=V_{cout}=6.0V$, $I_0=1mA \Leftrightarrow 200mA$, $C_{out}=2.2\mu F$

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.