IC for CMOS System Reset

Monolithic IC PST81XX, 82XX Series

Outline

This IC functions in a variety of CPU systems and other logic systems, to detect supply voltage and reset the system accurately when the power is turned on or interrupted.

To ±1.5% of detection voltage accuracy of the conventional models, a maximum of ±0.5% of super-high precision is realized, and it is more suitable for battery detection etc. Moreover, the mounting area significantly contributes to space saving using the SSON package.

Features

1. High Accuracy

2. Ultra-low current consumption

3. Ultra-small package

4. Operating temperature range

5. Detecting voltage rank

6. Output configuration

±0.5% typ. / 2.0~6.0V

±0.8% typ. / 0.8~1.9V

0.25µA typ.

1.10×1.40mm (SSON-4)

-40~+105°C

0.8~6.0V (0.1V step)

PST81XX series ······ CMOS output PST82XX series ····· Open drain output

Packages

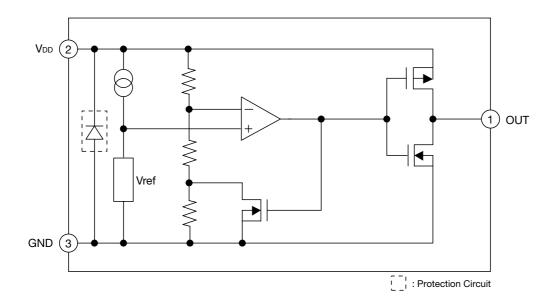
SOT-25A

SC-82ABA

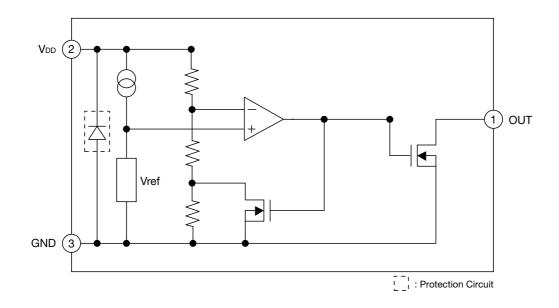
SC-82ABB

SSON-4

Applications

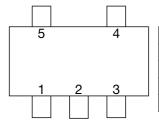

- 1. Reset circuits for microcomputers, CPUs and MPUs
- 2. Reset circuits for logic circuits
- 3. Battery voltage check circuits
- 4. Back-up power supply switching circuits
- 5. Level detection circuits

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.


The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications

Block Diagram

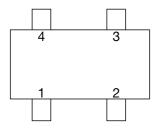
PST81XX *1-3 in the circuit diagram is pin number for the SOT-25A package.


PST82XX *1-3 in the circuit diagram is pin number for the SOT-25A package.

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Pin Assignment

PST81XX, PST82XX


1	OUT	
2	$ m V_{DD}$	
3	GND	
4	NC	
5	NC	

SOT-25A (TOP VIEW)

4	3
1	2
990	NI_4

(TOP VIEW)

1	OUT
2	GND
3	NC
4	V_{DD}

1	OUT
2	$ m V_{DD}$
3	NC
4	GND

SC-82ABA SC-82ABB (TOP VIEW)

Pin Description

PST81XXNX, PST82XXNX (SOT-25A)

Pin No.	Pin name	Functions
1	1 OUT Reset Signal Output Pin	
2	VDD VDD Pin / Voltage Detect Pin	
3 GND GND Pin		GND Pin
4	NC	No Connection
5	NC	No Connection

PST81XXRX, PST82XXRX (SSON-4)

Pin No.	Pin name	Functions
1	OUT	Reset Signal Output Pin
2	GND	GND Pin
3	NC	No Connection
4	V_{DD}	Vdd Pin / Voltage Detect Pin

PST81XXUX, PST82XXUX (SC-82ABA/-82ABB)

Pin No.	Pin name	Functions
1	OUT	Reset Signal Output Pin
2 VDD VDD Pin /		Vdd Pin / Voltage Detect Pin
3	NC	No Connection
4	GND	GND Pin

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Absolute Maximum Ratings

PST81XX

Item	Symbol	Ratings	Units
Supply voltage	V _{DD} max.	-0.3~+12.0	V
Output voltage	OUT	-0.3~(Vdd+0.3)	V
Input current (V _{DD})	Idd	20	mA
Output current (RESET, RESET)	Iout	20	mA
Power Dissipation	P_{D}	150 (SOT-25A, SC-82AB) 330 (SSON-4) (note)	mW
Operating temperature	Topr	-40~+105	°C
Storage temperature	Tstg	-65~+150	°C

PST82XX

Item	Symbol	Ratings	Units	
Supply voltage	Vdd max.	-0.3~+12.0	V	
Output voltage	OUT	-0.3~+12.0	V	
Input current (VDD)	$I_{ m DD}$	20	mA	
Output current (RESET, RESET)	Iout	20	mA	
Power Dissipation	P _D	150 (SOT-25A, SC-82AB) 330 (SSON-4) (note)	mW	
Operating temperature	Topr	-40~+105	°C	
Storage temperature	Tstg	-65~+150	°C	

note: With PC board of glass epoxy. (The tab pin is not connected with PC board.) PC board size of 110×40×0.8mm

Recommended Operating Conditions

Item	Symbol	Ratings	Units
Operating temperature	Topr	-40~+105	°C
Supply voltage	$V_{ m DD}$	0.70~10.0	V

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Electrical Characteristics (Except where noted otherwise Ta=25°C)

PST81XX

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units	Circuit
Supply current	Idd	$V_{\rm DD} = V_{\rm TH} + 1V$		0.25	1.0	μA	(1)
		Ta=+25°C V _{TH} ≤1.9V	V _{TH} -0.8%	V _{TH} 0.8~	V _{TH} +0.8%		(9)
Reset threshold	V_{TH}	$Ta=-40\sim+85^{\circ}C \text{ (note1)}$	V _{TH} -2.5%		V _{TH} +2.5%	$_{ m V}$	
neset tilleshold	VTH	Ta=+25°C V _{TH} ≥2.0V	V _{TH} -0.5%	6.0V	V _{TH} +0.5%] v	(2)
		$Ta=-40\sim+85^{\circ}C \text{ (note 1)}$	V _{TH} -2.5%	(0.1Vstep)	V _{TH} +2.5%		
Reset threshold hysteresis	∠VTH	$V_{DD}=0V \rightarrow V_{TH}+1V \rightarrow 0V$	V _{TH} ×0.03		V _{TH} ×0.08	V	(2)
Reset threshold temp. coefficient	⊿VTH/°C	$Ta=-40\sim+85^{\circ}C \text{ (note1)}$		±100		ppm/°C	(2)
L transfer delay time	tphl	V_{DD} = V_{TH} +0.4 V \rightarrow V_{TH} -0.4 V (note2)			100	μs	(5)
H transfer delay time	t PLH	$V_{DD}=V_{TH}-0.4V \longrightarrow V_{TH}+0.4V (note2)$			100	μs	(5)
	Iol1	$V_{\rm DD}$ =0.7 V , $V_{\rm DS}$ =0.05 V	0.01	0.10		mA	(3)
	Iol2	Vdd=1.2V, Vds=0.5V Vth>1.3V	0.23	2.00			
"L" output current	I _{OL3}	V_{DD} =2.4V, V_{DS} =0.5V V_{TH} >2.5V	1.60	8.00			
	1 1014	V _{DD} =3.6V, V _{DS} =0.5V V _{TH} >3.7V	3.20	12.0			
"U" output ourrent	Iон1	VDD=4.8V, VDS=0.5V, VTH<4.7V	0.36	0.62			(4)
"H" output current	Іон2	V_{DD} =6.1V, V_{DS} =0.5V, V_{TH} <5.9V	0.46	0.75		mA	(4)

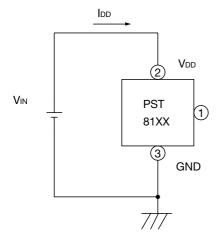
note1: This device is tested at Ta=25°C, over temperature limits guaranteed by design only.

note2: The parameter is guaranteed by design.

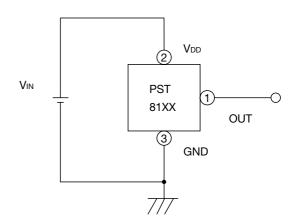
PST82XX

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units	Circuit
Supply current	Idd	$V_{\rm DD} = V_{\rm TH} + 1V$		0.25	1.0	μA	(1)
		Ta=+25°C V _{TH} ≤1.9V	V _{TH} -0.8%	V _{TH} 0.8~	V _{TH} +0.8%	V	(0)
Reset threshold	V_{TH}	$Ta=-40\sim+85^{\circ}C \text{ (note 1)}$	V _{TH} -2.5%		V _{TH} +2.5%		
neset tillesnold	VTH	Ta=+25°C V _{TH} ≥2.0V	V _{TH} -0.5%	6.0V	V _{TH} +0.5%] '	(2)
		$Ta=-40\sim+85^{\circ}C \text{ (note 1)}$	V _{TH} -2.5%	(0.1Vstep)	V _{TH} +2.5%		
Reset threshold hysteresis	∠VTH	$V_{DD}=0V \rightarrow V_{TH}+1V \rightarrow 0V$	V _{TH} ×0.03		V _{TH} ×0.08	V	(2)
Reset threshold temp. coefficient	∠VTH/°C	Ta=-40~+85°C (note1)		±100		ppm/°C	(2)
L transfer delay time	tphl	$V_{DD}=V_{TH}+0.4V \rightarrow V_{TH}-0.4V (note2)$			100	μs	(4)
H transfer delay time	tplh	$V_{DD}=V_{TH}-0.4V \rightarrow V_{TH}+0.4V (note2)$			100	μs	(4)
	Iol1	VDD=0.7V, VDS=0.05V	0.01	0.10			
	Iol2	VDD=1.2V, VDS=0.5V	0.23	2.00		mA	(3)
		$V_{TH}>1.3V$					
"L" output current	Love	V_{DD} =2.4V, V_{DS} =0.5V	1.60	8.00			
	Іодз	$V_{TH}>2.5V$	1.00				
	Ior.	VDD=3.6V, VDS=0.5V	2 20	19.0			
	IOL4	$V_{TH}>3.7V$	3.20	12.0			
Output leakage current	Ileak	VDD=10V, OUT=10V			0.1	μA	(3)

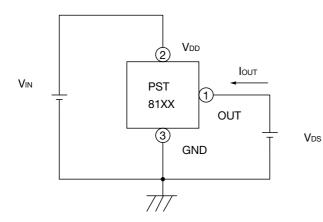
note1: This device is tested at Ta=25°C, over temperature limits guaranteed by design only.

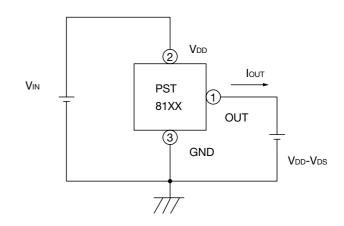

note2: The parameter is guaranteed by design.

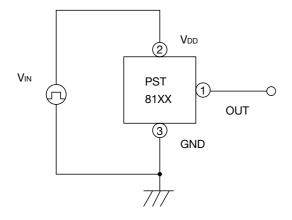
Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

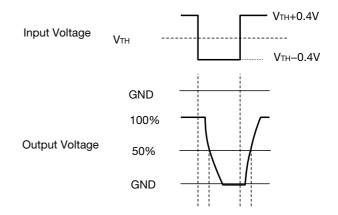

Measuring Circuit

PST81XX *1-3 in the circuit diagram is pin number for the SOT-25A package.


(1) IDD

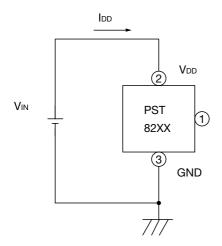

(2) VTH, ∠VTH, ∠VTH/°C

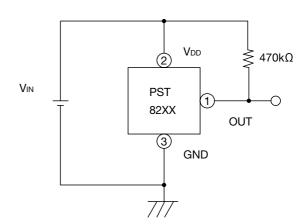

(3) IOL1, IOL2, IOL3, IOL4



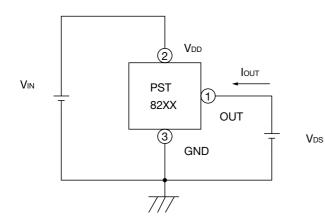
(4) IOH1, IOH2

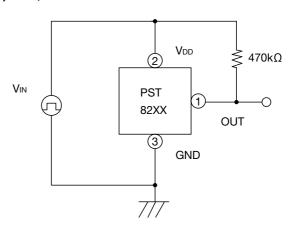
(5) tplh, tphl

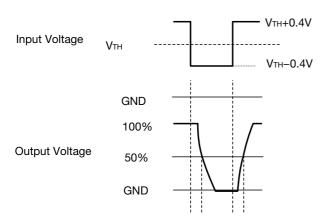



Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

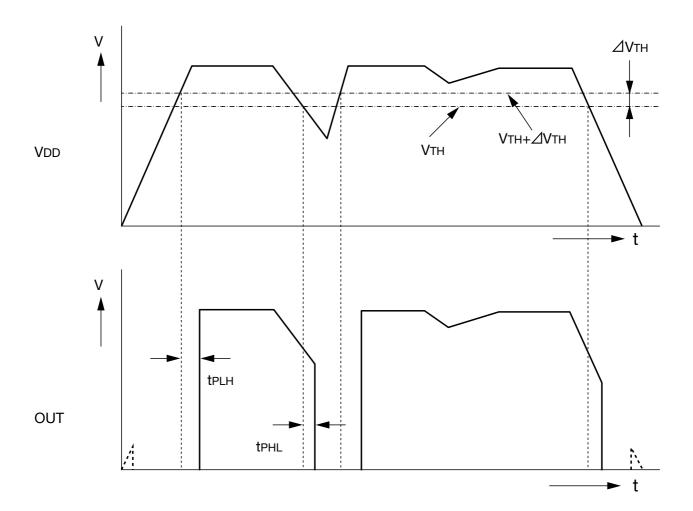
PST82XX *1-3 in the circuit diagram is pin number for the SOT-25A package.

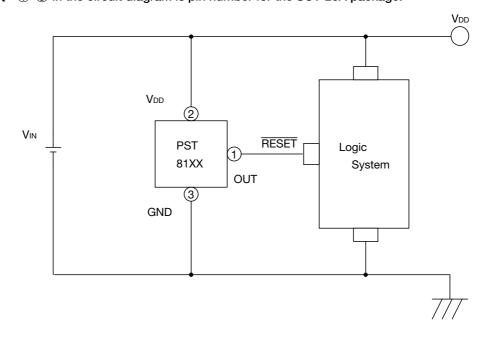

(1) IDD


(2) VTH, ∠VTH, ∠VTH/°C

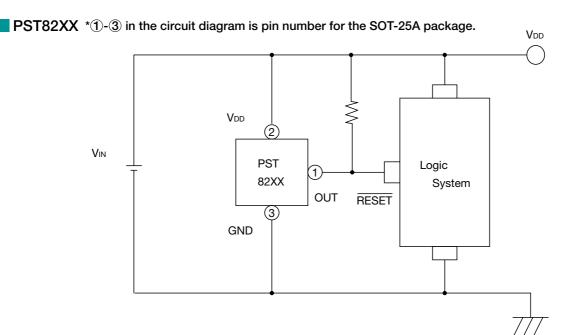


(3) IoL1, IoL2, IoL3, IoL4, Ileak

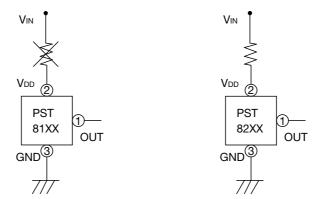

(4) tplh, tphl


Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Timing Chart



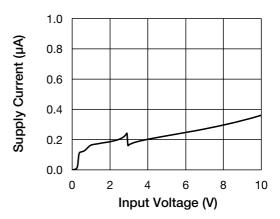
Application Circuits


■ PST81XX *1-3 in the circuit diagram is pin number for the SOT-25A package.

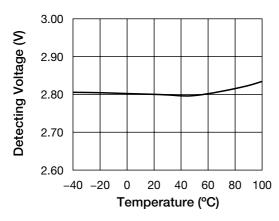
Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

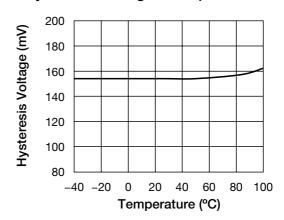
- · We shall not be liable for any trouble or damage caused by using this circuit.
- · In the event a problem which may affect industrial property or any other rights of us or a third party is encountered during the use of information described in these circuit, Mitsumi Electric Co., Ltd. shall not be liable for any such problem, nor grant a license therefore.

- · Please note that there is any possibility of circuit oscillation when resistance put in the line VIN.
- · Please do not put resistance for PST81XX.
- · Recommend 15kΩ or less for PST82XX.

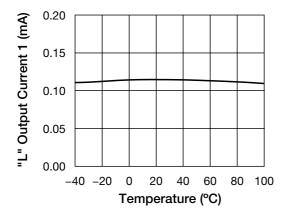

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

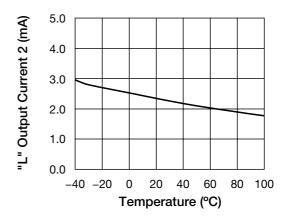
Characteristics (Typical Performance Characteristics 2.8V)


Detecting Voltage

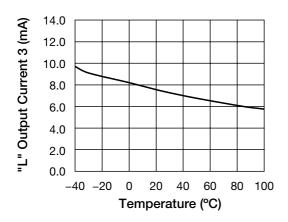

Supply Current

Detecting Voltage - Temperature


Hysteresis Voltage - Temperature


note: these are typical characteristics

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.


"L" Output Current 1 - Temperature

L" Output Current 2 - Temperature

■ "L" Output Current 3 - Temperature

note: these are typical characteristics

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.